Hi Larry hi Egil

hmm i found something written in Python look:

i hope that can be translated to BASIC.

`import math`

from math import cos, sin, sqrt, atan2, acos

def PatchFunction(thetaInDeg, phiInDeg, Freq, W, L, h, Er):

"""

Taken from Design_patchr

Calculates total E-field pattern for patch as a function of theta and phi

Patch is assumed to be resonating in the (TMx 010) mode.

E-field is parallel to x-axis

W......Width of patch (m)

L......Length of patch (m)

h......Substrate thickness (m)

Er.....Dielectric constant of substrate

Refrence C.A. Balanis 2nd Edition Page 745

"""

lamba = 3e8 / Freq

theta_in = math.radians(thetaInDeg)

phi_in = math.radians(phiInDeg)

ko = 2 * math.pi / lamba

xff, yff, zff = sph2cart1(999, theta_in, phi_in) # Rotate coords 90 deg about x-axis to match array_utils coord system with coord system used in the model.

xffd = zff

yffd = xff

zffd = yff

r, thp, php = cart2sph1(xffd, yffd, zffd)

phi = php

theta = thp

if theta == 0:

theta = 1e-9 # Trap potential division by zero warning

if phi == 0:

phi = 1e-9

Ereff = ((Er + 1) / 2) + ((Er - 1) / 2) * (1 + 12 * (h / W)) ** -0.5 # Calculate effictive dielectric constant for microstrip line of width W on dielectric material of constant Er

F1 = (Ereff + 0.3) * (W / h + 0.264) # Calculate increase length dL of patch length L due to fringing fields at each end, giving total effective length Leff = L + 2*dL

F2 = (Ereff - 0.258) * (W / h + 0.8)

dL = h * 0.412 * (F1 / F2)

Leff = L + 2 * dL

Weff = W # Calculate effective width Weff for patch, uses standard Er value.

heff = h * sqrt(Er)

# Patch pattern function of theta and phi, note the theta and phi for the function are defined differently to theta_in and phi_in

Numtr2 = sin(ko * heff * cos(phi) / 2)

Demtr2 = (ko * heff * cos(phi)) / 2

Fphi = (Numtr2 / Demtr2) * cos((ko * Leff / 2) * sin(phi))

Numtr1 = sin((ko * heff / 2) * sin(theta))

Demtr1 = ((ko * heff / 2) * sin(theta))

Numtr1a = sin((ko * Weff / 2) * cos(theta))

Demtr1a = ((ko * Weff / 2) * cos(theta))

Ftheta = ((Numtr1 * Numtr1a) / (Demtr1 * Demtr1a)) * sin(theta)

# Due to groundplane, function is only valid for theta values : 0 < theta < 90 for all phi

# Modify pattern for theta values close to 90 to give smooth roll-off, standard model truncates H-plane at theta=90.

# PatEdgeSF has value=1 except at theta close to 90 where it drops (proportional to 1/x^2) to 0

rolloff_factor = 0.5 # 1=sharp, 0=softer

theta_in_deg = theta_in * 180 / math.pi # theta_in in Deg

F1 = 1 / (((rolloff_factor * (abs(theta_in_deg) - 90)) ** 2) + 0.001) # intermediate calc

PatEdgeSF = 1 / (F1 + 1) # Pattern scaling factor

UNF = 1.0006 # Unity normalisation factor for element pattern

if theta_in <= math.pi / 2:

Etot = Ftheta * Fphi * PatEdgeSF * UNF # Total pattern by pattern multiplication

else:

Etot = 0

return Etot

def sph2cart1(r, th, phi):

x = r * cos(phi) * sin(th)

y = r * sin(phi) * sin(th)

z = r * cos(th)

return x, y, z

def cart2sph1(x, y, z):

r = sqrt(x**2 + y**2 + z**2) + 1e-15

th = acos(z / r)

phi = atan2(y, x)

return r, th, phi