
Creative Basic Page 1

Using the Editor
CBasic’s built in editor has many of the features of a standard text editor with the addition of
syntax colouring.

With syntax colouring, every statement or function that is a built-in component of CBasic is
highlighted in a user selectable colour. This makes your code more readable, and makes it
easier for you to find errors.

Open a new program by selecting File > New from the main menu bar and type in the
following program statements:

Notice the blue colouring of the CBasic program statements. If you make a mistake and
misspell a program statement, you will immediately know due to its lack of colour.

Now that we have some text in the editor we can explain some of the key commands the
editor responds to.

openconsole
print "Hello World"
do
until inkey$ <> ""
closeconsole
end

Key Action
<Page Up> Moves one page up

<Page Down> Moves one page down

Up Arrow Moves one line up

Down Arrow Moves one line down

<CTRL> + A Selects all text

<CTRL> + C Copies selected text to clipboard

<CTRL> + F Opens the 'Find' dialog

<CTRL> + H Opens the 'Find / Replace' dialog

<CTRL> + X Cuts selected text and copies to clipboard

<CTRL> + V Pastes text from clipboard at caret position

<HOME> Moves the caret to the beginning of the current line

<END> Moves the caret to the end of the current line

<CTRL><HOME> Moves to the beginning of the document

<CTRL><END> Moves to the end of the document

<Backspace> Deletes the previous character before the caret

<Delete> Deletes the next character after the caret

F4 Runs the current program

F5 Single steps through the current program after a STOP statement

F7 Continues execution of the current program after a STOP statement

<TAB> Tabs selected text to the right by one tab position

<SHIFT><TAB> Removes tabs from the beginning of each selected line (de-tab)

Creative Basic Page 2

To select text for copying and pasting, place the mouse cursor (I-Beam) over, or just to the
left of the first character of the text to be selected.

Press the left mouse button down and ‘drag’ the cursor over the text to select it.

‘Dragging’ means to hold the left mouse button down while moving the mouse.

If any character keys are pressed when text is selected, the selected portion will be replaced
with the new text. The selected portion can be deleted by pressing the <Delete> key.

Text may also be selected using the keyboard by holding the SHIFT key down, and pressing
one of <HOME>, <END>, <PAGEUP>, <PAGEDOWN>, or the Arrow keys.

You can select text from the current caret position, to any position clicked with the left
mouse button by holding down the SHIFT key.

Try out the editing methods on the little test progam you typed into the editor.

Assuming you still have the program as you typed in above, you can execute it by selecting
Build > Run from the main menu bar.

You can also run the program by pressing the green GO button on the tool bar, or by
pressing F4.

You should see a Console Window open with the message ‘Hello World’ in it.

To close this window just press any key.

To save the current program to a source code file select File > Save As from the main
menu bar.

This will allow you to give the program a meaningful name, and to select any existing folder
in which you wish to save it.

The default file extension for a CBasic source code file is .cba and this should not be
changed to anything else.

In the next section, we will begin exploring the Creative Basic language and learning the
syntax of commands, statements and functions.

Saving the Program

Running the Program

Selecting Text

Creative Basic Page 3

Introduction to Programming

What do we mean when we talk about writing a program for a computer?

A computer is just a box full of electronics with lights on the front. It will do nothing but sit
there humming to itself. It needs a ‘program’ (otherwise known as software) in order to do
something useful.

So how do we write a program to make things happen?

A program consists of a number of instructions. Each instruction is usually written on a
single line and tells the computer to perform a particular operation.

The ‘instruction set’ of a programming language can be thought of as a toolkit. You will
need to pick the right tool for each operation you require.

We could sit at the computer, open a word processor, and type some instructions. Ignore
for a moment what we type, and assume we just save the file. This would create a text or
document file, and the computer would be quite unable to run it as a program. What we
actually needed, is an ‘executable’ program, or .exe file.

For this, we need software that can process our written instructions into an executable
program. This is what Creative Basic provides.

Creative Basic provides a nice editor in which to write the instructions, and a help facility to
remind us how each instruction is to be used. This is known as the programming
environment or Integrated Development Environment (IDE).

There are a number of important elements in every program. Whether you are writing a
program yourself, or trying to understand one that someone else has written, you will need
to understand these elements.

We will talk about just four initially. These are:

 Variables
 Functions
 Statements
q Comments

Some Essentials

Programming

Variables
Variables are the quantities used in your program to represent values such as speed, price,
diameter, etc.

A program will use the computer's working memory to store changing information during
processing. This information is referred to as DATA.

An item of information stored in this way is known as a Variable.

It is a variable because the computer can alter the stored value whenever instructed by a
program statement.

Creative Basic Page 4

Variable Names
Each variable is given a name of your choice, and this can be any combination of letters and
numbers (but no special characters other than Underscore are allowed).

Variable names must begin with a letter (or Underscore _).

They are not case sensitive, and names can be up to 30 characters long.

You can write for example: costprice, COSTPRICE, or CostPrice.

All of these are acceptable names, and CBasic regards all of them as the same quantity.

CostPrice is probably the preferred form for readability.

Variables are an important part of every program. They represent the quantities you wish to
process to obtain a desired result. You can have as many variables in a program as you
wish.

Variable Type Definition

A variable can be specified as one of a number of types.
You tell CBasic what type you want your variable to be using the DEF statement.
(DEF is short for ‘Define’).

For example ..

DEF Number AS FLOAT

This defines the variable ‘Number’ as a ‘float’ type, which will store decimal numbers.

CBasic also supports the colon ':' as an alternative to the AS keyword.

Another example using the colon form is ..

DEF Num1, Num2 : INT

This defines both variables ‘Num1’ and ‘Num2’ as Integers, which will hold integer (whole)
numbers.

Notice that you can define several variables in a single DEF statement.

A final example shows a variable defined to hold String data ..

DEF Name AS STRING

The variable ‘Name’ is declared as a String variable, and can hold information such as “Mr
John Smith”.

String variables store text, and get their name from the term ‘a string of characters’.

Creative Basic Page 5

In most applications, you will encounter both numeric and alphabetic (string) data.
Numeric Data will be either Integer or Decimal quantities.

openconsole
def i, j, total as int
i = 5
j = 3
total = i + j
print "The total is: ", total
print "Press Any Key to Continue"
do:until inkey$ <> ""
closeconsole
end

Variable ‘i’ is set to the integer value ‘5’, and variable ‘j’ with the value ‘3’
The variable ‘total’ is then calculated as the sum of ‘i’ and ‘j’
The ‘print’ command prints the result stored in variable ‘total’, which will be ‘8’

You can use descriptive text to explain the quantities that are shown on the screen.

Notice that the calculation of ‘total’ must be placed after the statements defining ‘i’ and ‘j’.

All Variables, should be set (initialised) on the left-hand side of a statement before
they are used.

Integer addition, subtraction and multiplication are straightforward, but division always
needs care. Any fractional part resulting from division will be discarded.

For example ..

Div = i / j (ie. 5 / 3) if used in the above code, would result in Div = 1

(5 / 3 is actually 1.66666666, but the decimal part is lost since an integer variable cannot
hold decimal values).

Note: All CBasic numeric variables are converted internally into Double precision decimals
while calculations are performed, and the result is then assigned based on the data type of
the result variable. This ensures maximum accuracy.

If you require an integer result rounded up to the nearest integer, use the CEIL() function.
To round down, use the FLOOR() function as described in the Help - Users Guide.

To round the result to the nearest integer simply add 0.5 to the division. In the above
example ..

Div = i / j + 0.5 will result in 2.16666666, which will be truncated to Div = 2

Here is a small program demonstrating the use of Integer variables. You can make use of
your previously saved console skeleton program to test this out. Alternatively, just type the
statements into the CBasic editor window.

Integer Variables

Data Types

Creative Basic Page 6

Decimal Variables
Now let us examine another important type of variable - the decimal or ‘float’ type.

The strange name goes back in history as the ‘floating-point’ type - meaning that the decimal
point can be moved to represent very large, or very small numbers.

We will try another example program. Either close the existing program, and re-open the
skeleton console program - or delete the test statements for the previous example.

Enter these lines following the ‘openconsole’ statement (or modify the test lines of the
previous program) to read as follows:
openconsole
def x,y,product as float
' setprecision 8
X = 5
Y = 3.303
product = x * y
print "The product is: ", product
do:until inkey$ <> ""
closeconsole
end

When you run this program, you get the answer 16.51, not the 16.515 you were expecting.

We have defined the three variables as type float, so they are pre-defined to hold decimal
numbers. 4 bytes (32 bits) of storage are allocated for variables of this type, and as a result,
numbers can only accurately represented to 8 significant figures.

Decimal numbers are tricky and need to be handled with care. They are not necessarily
absolutely accurate because of the limited storage space allocated to each value.

So why do we get the answer 16.51?

Delete the quote at the beginning of the ‘set precision’ line (this changes it from a comment
line to an active statement), and run the program again.

This time you get the result 16.51499939. Oh dear! This looks even worse.

If the ‘setprecision’ statement ‘ is not specified, CBasic defaults to a precision of two
decimal places for output. This can be extended using the ‘Setprecision’ statement to
however many decimal places you require.

Internally of course, CBasic is always working to the highest accuracy the variable can
handle. When we remove the comment, and so set the precision to 8 decimal places, we
see the longer, but still inaccurate answer. However it is now apparent where the 16.51
answer came from.

The quantity after the second decimal place, is less than half a unit, so two decimal places,
will display 16.51, and the remainder is discarded.

Unfortunately, even if you increase the ‘setprecision’ statement value to 15 decimal places,
you will still not get the correct answer 16.515.

You are encountering a disturbing feature of decimal numbers called ‘precision’.

Creative Basic Page 7

In our example, the float variable can only accurately represent 16.514999. Any remaining
digits are not meaningful.

Now set the precision back to 8 places, and edit the variable definition line to read ..

def x, y, product as double

Run the program again - the result is now 16.51500000. At last, we have the correct answer.

Why is this? We have now defined the working variables as type ‘double’ precision.

Double precision variables use 8 bytes of storage (64 bits). Consequently, this type is
accurate to 16 significant figures.

Finally, change the ‘setprecision’ statement value to 15 decimal places again, and run the
program. You will see that now there is a digit 1 at the end of the result.

The 16 significant figures limit has again been reached, so the final digit is again not
meaningful.

Although this loss of precision might seem alarming, for a ‘float’ type, taking the first 8
significant figures means the most you can be in error is 1 in 100 million - not too bad at all.

Normally, most mathematical calculations involving decimals will give accurate answers if
you use ‘double’ precision variables. However, if you need to carry out a sequence of,
high-precision calculations on a variable, always be on the lookout for accumulating loss of
precision.

In most practical calculations, the ‘float’ type of variable will give satisfactory accuracy.

String Variables
String variables store text and get their name from the term "a string of characters".
Here is a small snippet of code to illustrate string processing ..
def s,t as string
s = "Here are 3 percentage signs - "
t = "%%%"
print s + t

Note that strings are enclosed in double quotes. (ie. "This is a string")

When we print the result in the example, the second string value follows the first. Why is
this?

The print instruction appears to be adding two strings - in fact, this operation is called
"concatenation". It simply appends one string to another.

String variables can hold up to 254 ASCII characters.

CBasic also has another string type known as an ISTRING.

This is an advanced STRING type, that can be defined and accessed like an array.

An ISTRING can be used anywhere a normal string can be used.

Creative Basic Page 8

The maximum length of an ISTRING is 65535 characters.

Here is an example using an istring variable ..

openconsole

def name[29] as istring

name = "Donald Duck"

print name

do:until inkey$ <> ""
closeconsole

Defined in this example as name[29], the variable ‘name’ can hold up to 30 characters.

This is because istring variables are similar to 'arrays', and are zero-based.

We will leave discussing arrays until later.

You can use the console skeleton program to try the above example out. The name will print
as 'Donald Duck'.

Why have two string data types? Obviously if you need to work with long strings, an ‘istring’
type will be needed.

If you are writing small strings to a Binary file (such as football team names), ‘istring’ varia-
bles can write smaller records than ‘string’ variables - which use fixed length 255 byte
records, however few characters are in use. The reason is that in a binary file, all data is
written in raw form, and will occupy the full number of bytes allocated to the variable type.

Otherwise, the string type is very commonly used for most string variables..

In console-based programs such as our previous examples, you can display a message to
the user, wait until he types some data and presses ‘enter’, and then use the information.

Using Strings for User Input

openconsole

def name$ as string

print "Type your name and press ENTER."
input name$
print "Hello ",name$

do:until inkey$ <> ""
closeconsole

Notice the variable ‘name$’ ends in the character ‘$’. This is not actually necessary when
using a string variable - it has a historical significance - when simply appending ‘$’ to a
variable name, made it a string variable. Nowadays, it is simply a useful aid to recognising
string variables in your code.

Use the ‘$’ if you find it helps - otherwise, just use your DEF statement to define string
variables.

	Using the Editor
	Saving the Program
	Selecting Text
	Running the Program

	Introduction to Programming
	Programming
	Some Essentials
	Variables
	Variable Names
	Variable Type Definition

	Data Types
	String Variables
	Decimal Variables
	Integer Variables

