
Creative Basic Page 1

Strings and Structures
The Basic language has always been good at handling strings
(groups of characters).

Creative Basic continues that tradition with an excellent set of
string commands.

Here they are:

Function Result

APPEND$ APPEND$("One plus ","two") returns "One plus two"

ASC ASC("A") returns 65

CHR$ CHR$(65) returns "A"

DATE$ DATE$("ddd',' MMM dd yyyy") returns “Wed, Aug 31 1994”

HEX$ HEX$(255) returns "FF"

INSTR Position = INSTR({start, } string1, string2)

Returns the position of the string ‘string2’ in ‘string1’. or returns 0 if string2
is not in string1. Optional 'start' variable specifies a starting point in string1
to begin searching.

LCASE$ LCASE$("MainFrame") returns "mainframe"

LEFT$ LEFT$ ("Alfred", 3) returns "Alf" - the first three characters from the left.

LEN LEN("Zebra") returns 5

LTRIM$ LTRIM$(" 4 spaces") returns "4 spaces" - spaces and tabs removed.

MID$ Result$ = MID$ (string, position {,count})
Extracts 'count' number of characters starting at 'position' from a string.
If 'count' is omitted, all of the characters from 'position' to the end of the
string are returned.
MID$("A song", 3,3) returns "son"

REPLACE$ s = "Good DOGs go to heaven"
REPLACE$ s, 6, 3, "dog" results in s = "Good dogs go to heaven"

RIGHT$ RIGHT$("Welcome",4) returns "come"

RTRIM$ RTRIM$("Trailing 4 ") returns "Trailing 4"

SPACE$ SPACE$(5) returns " " - (5 spaces)

STR$ STR$(123) returns "123"
STR$ only works to FLOAT precision - 7 significant figures.

STRING$ STRING$(5,"T") returns "TTTTT"

TIME$ TIME$ returns "hh:mm:ss"

UCASE$ UCASE$("Cleopatra") returns "CLEOPATRA"

VAL VAL("123.67") returns 123.67

Creative Basic Page 2

Arrays

An Array is a collection of data of the same type.

When you DEF(ine) an array, memory will be reserved to
hold the data, depending on the data type, and the size of
the array you define.

Suppose you anticipate having to process 5 integers such
as 21, 5, 36, 50, 2 .

You will need to define an array such as DEF A[5]: INT
The number in square brackets specifies the required number of locations including zero.

The 5 allocated memory locations are indexed as : A[0] , A[1], A[2], A[3], and A[4].

This is because array indexing is zero-based. That is, the first byte of the zero'th location
identifies the start of the array. in memory.

It will allocate 5 sequential storage locations (elements) to the array variable named A, each
location reserving 4 bytes of memory (since the Integer data type requires 4 bytes of storage).

Each of our 5 integers can now be stored, one in each location, so that:

 A[0] =21
 A[1] = 5
 A[2] = 36
 A[3] = 50
 A[4] = 2

How do we load the numbers ? Well, we could write separate assignments for each location
as above. That works, but it becomes a chore when a large array is involved.

Alternatively, we can write more concisely:
 A[0] = 21, 5, 36, 50, 2

Also, if later we were to write:
 A[3] = 66, 105

We would overwrite the last two locations, so the array content would then be:
 A[0] =21
 A[1] = 5
 A[2] = 36
 A[3] = 66
 A[4] = 105

An instruction PRINT A[2] , would display the value 36

An instruction A[3] = A[3] + 1 , would increment array location A[3] by one to 67.

Creative Basic Page 3

Arrays are at their most useful in looping operations.

Here's an example using a loop to print the values stored in the array:
openconsole
cls

def a[5]:int
' load the array ..
A[0] = 21, 5, 36, 50, 2

for i = 0 to 4
print "A[", i, "] = ", a[i]

next i

do:until inkey$<>""
closeconsole
end

Notice that the FOR loop runs from 0 to 4, to access the zero'th element of the array A[0],
and run through to the A[4] element which holds the fifth number.

Now you're probably thinking that you sort of understand what an array is, but are feeling
confused about the zero-based indexing.

You'd probably prefer to place your first value in A[1], and the fifth value in A[5].

So would I, so here's how to do it.

Define one more location for the array than before - DEF A[6]:INT

Now we can ignore the zero'th location A[0]. It's still there, so we are wasting a small amount
of space.

Now we can load the values into the array using:

 A[1] = 21, 5, 36, 50, 2

Creative Basic Page 4

 A[1] =21
 A[2] = 5
 A[3] = 36
 A[4] = 50
 A[5] = 2

The five numbers are now stored in array locations A[1] to A[5] as follows:

I think that's much easier to follow.

One other thing to mention, is that we don't have to 'waste' the zero'th location - it can be
used to hold the number of array elements in use.

Suppose we allocate a larger array having 10 locations, by defining an array size A[11].
(Remember the extra one to allow for the zero'th location)

Maybe we've only processed 5 items of information, so the array is nowhere near full.

If, as we process each item, we update a count in A[0], we can use this to tell us exactly
how many array locations have been used. So in our example A[0] = 5

Now we can re-do our program to print the contents of the array using this count.

openconsole
cls

def A[11]:int
' load the array with only 5 values ..
A[1] = 21, 5, 36, 50, 2
' keep count ..
A[0] = 5

for i = 1 to A[0]
print "A[", i, "] = ", a[i]

next i

do:until inkey$<>""
closeconsole
end

The five values in array A[] are now located in locations A[1] to A[5] , and the awkward A[0]
location is pressed into service as a count, telling us how many array locations we've used.

A much more satisfactory arrangement I think.

The above example described an array of integers, but an array can be defined to store
any of the available variable types including strings.

We might for instance have an array of strings:

def A[6]:string

A[1] = "Alan"
A[2] = "Janet"
 .. etc ..

Creative Basic Page 5

Multi-Dimensional Arrays

Now we move on into even murkier waters .. arrays with more than
one dimension.

Creative Basic provides for arrays having up to three dimensions.

So far, we've only looked at a single column array - one dimension.

A 2-dimensional array is like a spreadsheet or table - having so many rows and so many
columns - for example def A[10,20]:int

3 dimensions are harder to visualise - maybe something like a book of 2-dimensional tables
with so many pages.

For example, we could get to a particular data item in a 3-dimensional array on Row 5,
Column 3, Page 4 by using a statement like:

def A[10,5,10]:int
def value:int

..
value = A[5,3,4]

Internally arrays are stored in column major order.

That means for a 2-dimensional array, the first column loads from element 0,0 and the
second column from element 0,1

Here's an example which stores Name and Age for two people - name in the first column
and age in the second.

openconsole
cls

' two dimensional array

def a[3,3]:string

a[1,1] = "Fred","Alyson"
a[1,2] = str$(23),str$(25)

for i = 1 to 2
print a[i,1],a[i,2]

next i

do:until inkey$<>""
closeconsole
end

It works, but it doesn't look or feel very efficient. I don't like having to convert numbers to
strings for example, just to satisfy the one type of data requirement.

Multi-dimensional arrays are fine if loaded as part of a maths calculation routine, but are a
strain on the brain when initialising values in the correct order.

There are better ways.

Creative Basic Page 6

There are in fact no such things as multi-dimensional arrays in computer memory.
All data is laid out flat from the start of an array, with the memory locations corresponding to
the 1, 2 or 3 dimensions calculated by the computer.

Therefore, it is easier conceptually and in practice, to set up several one dimensional arrays
to hold data 'records' which can then be of mixed types.

Associated Arrays

A simple example might be a dataset to hold Names, Address, Postcode, and Telephone
number. If we insist on keeping the data items separate for the sake of the example, that
would require 4 dimensions in the previous method, which was not possible.

(Obviously all the strings could be combined into one or two long records).

Here's an example of how this works:

openconsole
cls

' two dimensional array
def size:int
def tabs:string

size = 3
' dynamic array sizing
def name[size],address[size],postcode[size],phone[size]:string

' initialise arrays
name[1] = "Fred","Alyson"
address[1] = "2 Smith Square, Bexley"
address[2] = "43 Berkley Road, Tipton"
postcode[1] = "CH3 5TG","TY2 H23"
phone[1] = "0121 478574","0155 687235"

tabs = string$(6,str$(9))

for i = 1 to 2
 print
name[i],tabs,address[i],tabs,postcode[i],tabs,phone[i]
next i

do:until inkey$<>""
closeconsole
end

This example also shows that arrays can be dynamically sized. The required size is
determined at run time, and the arrays are then DEF(ined)

Data is initialised starting at the first array element (rather than the zero'th) as before.

The array Name[] could be searched for a required name. Once the index was obtained, it
would apply to all the other associated arrays, and the record could be displayed.

This seems an improvement over the multi-dimensioned array method, and can be used
easily with mixed data types.

However, there's an even better way.

Creative Basic Page 7

User Data Types

Creative Basic provides a really flexible way to deal
with data records - the User-defined data type.

This advanced data type can take the place of multi-
dimensioned arrays, and becomes really useful when
graphics and games programs are involved.

This example will use the previous example of Name,
Address, Postcode, and Telephone number data.

openconsole
cls

def tabs:string

type NAPP
 def name :string
 def address :string
 def postcode :string
 def phone :string
endtype

def rec[5] : NAPP

rec[1].name = "Fred"
rec[1].address = "2 Smith Square, Bexley"
rec[1].postcode = "CH3 5TG"
rec[1].phone = "0121 478574"

rec[2].name = "Alyson"
rec[2].address = "43 Berkley Road, Tipton"
rec[2].postcode = "TY2 H23"
rec[2].phone = "0155 687235"

tabs = string$(5,str$(9))

for i = 1 to 2
' note the closing comma to ensure printing continues on the same line
 print rec[i].name,tabs,rec[i].address,tabs,

print rec[i].postcode,tabs,rec[i].phone
next i

do:until inkey$<>""
closeconsole
end

We have defined an array rec[5], where each array entry holds a complete record for each
person.

Each data item is accessed using the dot '.' operator

The elements of each record would normally be loaded dynamically as the user enters them,
but could be loaded from a disk file.

This is a much neater method, and becomes even more powerful when you consider that
any of the User Type variables can themselves be nested UDT's.

	Arrays
	Multi-Dimensional Arrays
	Associated Arrays
	User Data Types

