
Creative Basic Page 1

In an earlier section, we took a general look at variables
and data types. Now we will look specifically at writing
programs using Creative Basic.

A computer language is just a way of expressing your
application in a form the computer can process. (It’s
own internal language is too detailed for most people to
work with).

To this end, a language needs to be concise, easy to
understand, and intuitive to work with.

After many years programming in all sorts of languages, I’ve concluded that Basic, and
Creative Basic in particular, meets those aims. For all sorts of applications from science
to games, in my opinion, it’s the most user-friendly and productive tool.

So let us take a look at the beautiful language in all it’s simplicity.

We will work initially in a Console window, so copy the skeleton console program into the
Creative editor - and away we’ll go ..

The Basic Tools

All programs will use a number of variables, and their type needs to be defined. Some will
be Integers, some Decimals (Float or Double), and some Strings.

This is done with a DEF(ine) statement ...

openconsole
cls

do:until inkey$ <> ""
closeconsole
endend

Programming in Creative Basic

def i, j as int
def a$: string

We now have two integer variables ‘i’ and ‘j’ and a string variable ‘a$’ ready for use.

In the same way, you can specify as many variables as you need, of any required data type,

Once you have some variables, you will want to place some values into them.

That’s very easy, using statements like variable = expression ... the expression being any
combination of constants, variables and functions.

 i = 5
 j = i + 2
 a$ = "A string"

Creative Basic Page 2

You now have some variables and some data in them. So you'll want the program to display
the values and the results of any calculations.

We only need one other command to do that .. the PRINT command.

print a$
print "The value of j is: ",j

That's all we need for a simple program. If you copy all the above statements into the editor
just after the 'cls' statement, you can run the program and see the results in the console
window. You have a working program, using only three of Creative's tools.

Notice how you can easily put your own descriptive text into print statements and display it
on the screen.

That was easy, but we only processed values that we typed directly into the program.

Most programs will process information entered at run time by the user. This is much more
useful.

In our console program, we introduce the INPUT statement ..
input "Input a number: ",i
input "What is your name? ",a$

The program can now be modified to run interactively:
openconsole
cls

def i,j:int
def a$:string

input "Input an integer: ",i
input "What is your name? ",a$

j = i + 2

print "Hello ",a$
print
print "The value of j is: ",j

do:until inkey$ <> ""
closeconsole
end

Quite useful programs can be built using just those few commands.

Of course, the console window is not a very attractive user interface, and formatting the
output nicely is a problem - but it's a start.

This kind of program processes the statements from top to bottom.

Much more interesting things can be done if we bring Looping and Branching commands
into play.

Creative Basic Page 3

The FOR Loop
The FOR loop is used to perform a number of statements a specified number of times.

At it's simplest, it looks like ..

FOR i = 1 to 10

NEXT i
It works like this ...

The Loop Control variable ('i' in this example), starts with the value 1.

Any statements between FOR and NEXT are processed, and the loop then returns control
to the FOR statement.

The Loop Control variable is incremented by one, and all statements in the loop are
processed again.

This sequence repeats until the Loop variable exceeds the upper value (10 in this case).
The loop then terminates, and the program moves on to statements following the loop.

Simple enough, but if you write a FOR loop that will loop for say 1,000 times, you may need
to get out of it when some condition occurs.

This can easily be done by setting the Loop Variable equal to the upper limit. In this example,
setting i = 10 will stop the loop, because it will think it has finished.

A FOR loop is not limited to incrementing by one - you can use an optional STEP value.

FOR i = 1 to 10 STEP 2
 print i
NEXT i

This example will print the numbers 1,3,5,7, and 9. It stops at 9 because the loop variable
increments to 11, which exceeds the upper limit.

The FOR loop is very flexible, since the start, end and step values can all be variables set
within the program.

As well as stepping upwards, a FOR loop can increment downwards as well, as in this
example.

FOR i = 10 to 1 STEP -2
 print i
NEXT i

If you run this example, you will get the values 10,8,6,4, and 2. It stops here because the
loop variable will increment to zero, which is less than the finishing value 1.

Creative Basic Page 4

DO - UNTIL Loop
Whereas a FOR - NEXT loop operates between defined 'start' and 'end'
control limits, a DO - UNTIL loop will keep looping until a specified
condition becomes TRUE.

So when a DO loop begins, it will execute all statements between the
DO and the UNTIL at least once, because the test condition is
attached to the UNTIL statement at the end of the loop.

openconsole
cls

def i,n:int
n = 8

DO
print n
n = n - 1
UNTIL (n < 4)

do:until inkey$ <> ""
closeconsole
end

This example will print 8,7,6,5,4. The loop ends when 'n' is decremented to 3, which the
test condition (n < 4) detects.

WHILE - ENDWHILE Loop

The WHILE loop differs from the DO loop in that the test condition is at the beginning of the
loop attached to the WHILE statement.

This means that the statement block between the WHILE and ENDWHILE statements may
not be executed at all.

When a WHILE loop begins, the test condition is examined, and only if it is TRUE will the
loop begin.

openconsole
cls

def i,n:int
n = 8

WHILE (n > 4)
print n
n = n - 1
ENDWHILE

do:until inkey$ <> ""
closeconsole
end

This time, the program will print the values 8,7,6,5.

It will not print the value 4, because the test detects that 'n' is NOT greater than 4, and the
loop ends. If you required the loop to execute to print 4, you would need to change the test
condition to (n >= 4).

Creative Basic Page 5

So there are three looping methods to choose from:

FOR - NEXT
DO - UNTIL
WHILE - ENDWHILE

Now, we'll have a look at the branching (or conditional) methods.

IF - THEN - ELSE

IF - THEN - ELSE - ENDIF is one of the oldest programming tools.

It means, IF some condition is TRUE, then perform one block of
statements, ELSE perform another block of statements. Each IF -
THEN - ELSE statement terminates with an ENDIF statement.

The test condition can be any expression that results in a TRUE or FALSE result.

The ELSE block is optional and provides for a group of statements that will be executed if
the test condition is FALSE.

Depending on the result of the conditional expression, only one of the TRUE or FALSE
blocks will be executed - not both.

In a full IF - THEN - ELSE statement, THEN must not be written - as in the following example.
openconsole
cls

def n:int
n = 8

IF (n < 5)
n = n - 7

ELSE
n = n + 7

ENDIF

print n

do:until inkey$ <> ""
closeconsole
end

However, you do have to write THEN in the single line version of the statement - but in this
case, the ENDIF statement is omitted.

if (m > 2) & (n < 10) THEN print "Accepted"

A single line version can only execute one statement.

If the single line IF test condition is FALSE, the statement following THEN is not executed,
and the program continues with the next line.

Creative Basic Page 6

Some languages provide for multiple conditional blocks, using ELSEIF clauses.

Creative does not have ELSEIF, but the capability is easily implemented using nested IF
statements. Here is an example ..

openconsole
cls

def nitrate,mass:int
nitrate = 8
mass = 5

if (nitrate >= 5)
if (mass < 10)

 print "mass ratio is correct"
else

 print "mass ratio error"
endif

else
print "Concentration too low"

endif

do:until inkey$ <> ""
closeconsole
end

However, if your application requires multiple conditions to be evaluated, a much better
tool is provided by the SELECT - CASE - ENDSELECT method.

SELECT
The SELECT statement is a powerful statement that allows you to test for many different
conditions, and to execute a block of statements according to whichever condition is
TRUE.

You can have as many test cases as you wish. Only the first TRUE condition will be exe-
cuted, so make sure the conditions are unique.

You can however, use a DEFAULT clause for a case where none of the tests are true.
openconsole
cls
def value:int

value = 2

SELECT value
CASE 1

 print "Value is one"
CASE 2

 print "Value is two"
CASE 3

 print "Value is three"
DEFAULT

 print "Value out of range"
ENDSELECT

do:until inkey$ <> ""
closeconsole
end

Creative Basic Page 7

The above example shows a SELECT statement used to test for a particular numeric or
alphabetic value.

In other situations, you may wish to test for one of a number of logical expressions being
TRUE. Then a rather special form of the SELECT statement comes into play.

You test for a logical expression being TRUE. (remember that TRUE equates to 1)

openconsole
cls
def Choice:int
print

LABEL again
input "Enter a Number, (0 to end) : ", Choice
if Choice = 0

closeconsole
end

endif

SELECT 1
CASE (Choice > 10)

 print "number is greater than 10"
CASE (Choice < 10)

 print "Number is less than 10"
CASE (Choice = 10)

 print "Number is equal to 10"
ENDSELECT

print
GOTO again

Notice the SELECT 1 statement. Each CASE expression will be tested to see if it is TRUE..

Each expression should be unique, because only the first CASE found to be TRUE will have
it's statement block executed.

You can catch a situation where none of the CASE's are TRUE by using the DEFAULT
clause as shown in the previous example.

GOTO

The GOTO instruction provides a direct jump to a Labelled section of code, in the current
program or subroutine. You cannot jump between subroutines.

This snippet shows the direct form of the GOTO command ..

GOTO SectionA
 ..
 ..
LABEL SectionA
 ' Processing continues from here

..

The LABEL description can be any alphanumeric text or number, and in most cases need
not be enclosed in quotes. The GOTO and LABEL descriptions should be the same.

Creative Basic Page 8

The GOTO instruction also has a dynamic form that's useful in
some situations.

In this form, the GOTO specifies a target label using a String
variable preceded by '$'.

So by setting the string variable to the label description of a chosen label, you can branch
to one of a number of destinations in the code.

This example sets variable 'labeltext' to "NextPart". The GOTO will then jump to Label
NextPart.

openconsole
cls
def i:int
def branch:string

i = rnd(2) + 1 :' pick a number 1 or 2

if i = 1 then branch = "Part1"
if i = 2 then branch = "Part2"

GOTO $branch

LABEL Part1
 print "This is Part 1"

GOTO Ending

LABEL Part2
 print "This is Part 2"

LABEL Ending

do:until inkey$<>""
closeconsole
end

def labeltext:string

labeltext = "NextPart"

GOTO $labelText
..

LABEL NextPart

Here's a small test program demonstrating the dynamic GOTO statement.

Of course, this simple example could equally well have been coded using a SELECT
statement.

It just demonstrates multiple target branching by resetting the text of a string variable (in this
example named 'branch').

The GOTO statement is the only command in your programming toolbox, which will branch
unconditionally to a specified part of your program. Quite valuable when the need arises.

	The Basic Tools
	The FOR Loop
	DO - UNTIL Loop
	WHILE - ENDWHILE Loop
	IF - THEN - ELSE
	SELECT
	GOTO

