- Mathematics

Getting Started

Calculations are what computers do best. Many thousands of complex
calculations can be performed In the blink of an eye.

Creative Basic has a rich set of mathematical operations and functions
which can be applied to any mathematical or statistical task.

Statements and Expressions
Programs will involve many Statements which will look something like:

variable = expression

The ‘variable’ will have been given an appropriate name (using a maximum of 30 charac-
ters) and will be defined as one of the data types discussed earlier.

Variables are ‘assigned’ a value with the ‘=’ sign, (For example: count = 5)

When the program is run, the ‘expression’ is evaluated, and the result is stored in the
receiving variable.

The expression can be any combination of numbers, variables, constants, array elements
and function calls.

A simple example is :

Def value as int

value = 5 * cos (x)

Arithmetic Operators

An expression will usually have several Arithmetic Operators separating the values in the
expression.

Creative Basic has the following arithmetic operators:

Symbol Name Example Result
+ Addition 1.5+56 7.1
- Subtraction 46-3.2 1.4
* Multiplication 1.5*2.2 3.3
/ Division 45/25 1.8
A Exponentiation 372 9
% Modulus (Remainder) 6 %4 2

Creative Basic Page 1

Operator Precedence

In a complicated expression, processing is broadly from left to right, but arithmetic operators
have a generally accepted precedence .

The Precedence of the operators are (from highest to lowest):

A

*

/s
+, -

Any terms involving exponentiation (raising to a power), are performed first - followed by
multiply and divide terms, and finally any additions and subtractions.

If there is any possibility of this default sequence giving a result which is not what you intend,
use parentheses () to clarify what you want to achieve.

Parentheses () take precedence over all other operators.

For example, you might have a complicated expression as in the following example:

openconsole
cls

Def value, j as int
Def x as float

0.5
5

X
]

x 4 ~ sgrt(j) + 3.056 / 1.14 * cos(x)
print x
do:until inkeyS$<>""

closeconsole
end

The expression for ‘X’ leaves plenty of scope for not getting the answer you expect. (You
can try it out using the console test program above).

As written, the printed result for X’ will be 24.55.

But what if you really meant (note the new parentheses) :
x = 4 ~ sqrt(j) + 3.056 / (1.14 * cos(x))

Now you will get the printed result for ‘X’ as 25.25.

So always use Parentheses in complicated expressions, to specify exactly what you want
to achieve.

Creative Basic Page 2

While parentheses will make your intention clear, there is another approach.
You can use what are known as Auxiliary equations.

We could write:

auxl = 4 ~ sqrt(j) + 3.056

aux2 = 1.14 * cos(x)

x = auxl / aux2

In other words, Auxiliary equations can be used to split a complex expression into simpler
expressions.

Incidentally, this also makes it easier to check the accuracy of intermediate results by

placing a ‘Stop’ statement just after the equations, and using the Debug display to see the
values of each variable .. a very useful facility.

Maths Functions
Creative provides the following maths functions.
All trigonometric functions take their parameters in radians and return their results in radians.

Each of these functions takes one parameter, a numeric expression or variable, and returns
a numeric result.

Function Return Value

SIN (n) Sine of n

COS (n) Cosine of n

TAN (n) Tangent of n

ASIN (n) ArcSine of n

ACOS (n) ArcCosine of n

ATAN (n) ArcTangent of n

SINH (n) Hyperbolic sine of n

COSH (n) Hyperbolic cosine of n

TANH (n) Hyperbolic tangent of n

LOG (n) Natural logarithm of n

LOG10 (n) Base 10 logarithm of n

SQRT (n) Square root of n

EXP (n) Exponential of n

ABS (n) Absolute value of n (removes sign)

CEIL (n) The smallest integer greater than or equal to n
FLOOR (n) The largest integer that is less than or equal to n
RND (n) A random number between 0 and n

INT (n) The whole number portion of n

NOT (n) Returns the ones compliment of n

SGN (n) Returns -1 if negative, 1 if positive and 0 if nis 0

Creative Basic

Page 3

We’'ll do an example - and at the same time, demonstrate how
useful the Console Window skeleton program can be.

1

This is a great set of tools - but if you need more - you can

just roll your own.

It's easy to do, and is a useful feature of Creative Basic.

In case you've forgotten it from the earlier ‘Using Windows’ section, here it is again.

openconsole

do:until inkey$ <> ""
closeconsole
end

(I usually save this simple console skeleton somewhere, so that | can copy and paste it

whenever it's required).

Then, if ever you have a little test program to check out - this bit of code is just pasted into
the Creative editor - and away you go.

Making your own Functions

As a simple example, we will create a useful function to return a Random Number between

any two given values.

The built-in random number function RND(n) takes only one argument and gives a result
between 0 and the specified value ‘n’.

So our function is just extending this to take two arguments. Here is the test console
program and the new function Rn(Lower,Upper).

openconsole
cls
autodefine "off"

declare Rn(Low as int, High as int)

for 1 = 1 to 10
print Rn(10,50)
next i

do:until inkeyS$<>""
closeconsole
end

sub Rn (Low, High)
def ret:int

generates an integer random number between Low and High ..

ret = int((high - low + 1)
return ret

* rnd(l) + low)

Just copy and paste into the Creative editor and run it.

You should see 10 random numbers between 10 and 50.

Creative Basic

Page 4

Notice the statement at the beginning of the test program.
declare Rn(Low as int, High as int)

This declares the new function Rn(), as a user function, so that it can then be used
anywhere in the program, as if it was a Creative built-in function. Very useful.

You can do this for any function you wish to create.

Precision

Creative defaults to a precision of two decimal places for output.

In fact, all Creative maths operations are computed internally using Double precision
accuracy (16 significant figures), but only two decimal figures are displayed by default.

It's easy to adjust the number of decimal places by using the Set Precision command.
For example:

setprecision 5

will give 5 decimal places for output values..

A variable of type Float can only represent up to 8 significant figures, and a Double
precision variable up to 15 significant figures.

So there’s no point in using the Setprecision statement to go beyond those values.

The Rn() function is also interesting because it uses the in-built Creative function RND(1).

The user guide says that this function generates random numbers from 0 to ‘n’. So if you
use for example RND(10) , you will get numbers between 0.0 and 9.99999.

Notice that the RND() function returns decimal values.
So RND(1) will give random numbers between 0.0 and 0.99999.
If you need integer values, use INT(RND(n) + 0.5) for numbers between 0 and ‘n’.

If you omit the rounding value 0.5, the random numbers will never return the highest value
‘n’. Alternatively use INT(RND(n+1)) to make sure the value ‘n’ will be returned.

Creative Basic Page 5

While we’re on a roll .. you might like this home-grown function RFlip():

openconsole
cls

declare RFlip ()

for 1 = 1 to 10
print Rn (10,50)
next i

do:until inkey$<>""
closeconsole
end

sub RFlip

returns a random +1 or -1
def ret: int

if rnd(l) < 0.5

ret = +1
else

ret = -1
endif

return ret

What on earth is that any good for? .. you might ask.

Well, suppose you want to move an object around the screen with random direction and
speed, you could use RFlip() as in this snippet ..

' set the initial direction of movement and speed (pixels)..
dx = RFlip() * Rn(1l,3)

dy = RFlip() * Rn(1,5)

The random numbers we’ve just looked at are drawn from a ‘uniform rectangular distribution’
in which every number has an equal probability of occurring.

For some applications, you will need another type of random number distribution - the
‘Normal distribution’ for which numbers are distributed according to the normal probability
curve.

Creative Basic Page 6

So just to complete our exploration of random numbers, here is a test program for a
Rnorm() function. The user function declaration is at the top, and the Rnorm() function
is at the end.

openconsole
cls

declare Rnorm(lower as int,upper as int,mean as int,sdev as int)

def dist[26]:1int
def i,j,n:int

lower = 0: upper = 100
mean = (upper - lower) / 2.0
sdev = (upper - lower) / 6.0

for i = 1 to 20000
n = Rnorm(lower, upper,mean, sdev) /4 + 1

if n <= 25
dist[n] = dist[n] + 1
endif
next 1

locate 2,30
color 15,9
print "Normal Distribution"

for 1 = 1 to 25
n = dist[1]/100
for 3 =1 ton
locate 25 = 9, 4 * 3 + 1
print "X"
next j
next i

do:until inkey$ <> ""
closeconsole
end

sub Rnorm(lower as int,upper as int,mean as int,sdev as int)
returns random numbers with normal distribution and given mean
' and standard deviation

def x1,x2,r,nval : double

do
x1l =2 * rnd(1l) - 1.0
x2 =2 * rnd(l) - 1.0
r = x1 * x1 + x2 * x2
until r < 1.0

nval = x2 * sqrt(-2 * log(r) / r)
nval = mean + nval * sdev

return nval

Copy and paste the test program into the Creative editor and run it.

You should see the results plotted as a ‘normal curve distribution’.

Creative Basic

Trigonometric Functions

The trigonometric functions like sine, tangent, etc. expect the number to be expressed in
radians, rather than degrees.

There are (2 * pi) radians in a full circle of 360 degrees.
To work in circular units, you will often need the value for ‘pi’.

You can calculate ‘pi’ in two ways:
pi = 4 * atan(1) or pi = acos(-1)
Then to convert from degree to radians, you can use:
d2r = pi / 180

To convert from radians to degrees, it's just the inverse:

r2d = 180 / pi

Logical Operators

Many occasions arise when it is necessary to compare two values.
These are known as Logical (or Boolean) comparisons.

The main thing to note about such comparisons, is that the result can only be one of two
possible values - TRUE or FALSE.

Some languages have pre-defined constants for these values.
Normally TRUE equates to 1, and FALSE equates to 0.

Creative doesn’t have pre-defined values for TRUE and FALSE. In fact you rarely need to
type them yourself.

When you carry out logical tests using the logical operators, the result will be a TRUE or
FALSE value that other program instructions can use directly.

Creative Basic Page 8

Creative has a good set of logical comparison operators:

Logical Operator Meaning

> Greater than

< Less than

<> Not equal to

= Equal to

>= Greater than or equal to
<= Less than or equal to

You can use these operators to compare two variables or expressions.

Here is a simple example using the greater than comparison ..

openconsole
cls

def a:float

def b:int
a = 2.01
b =2

if (a > b) then print "a is greater than b"

do:until inkeyS$<>""
closeconsole
end

If you are comparing two numeric values, it doesn’t matter what type they are.

Obviously, trying to compare a numeric value with a string value such as “Jim”, makes no
sense.

You can compare two characters or string values on an ASCII code basis - that is, “a” is a
smaller value than “z".

So “aardvark” is considered a smaller value than “zephyr” in any logical comparisons.

However, watch out for upper and lower case values, because lower case characters have
higher ASCII values. (ASCII “A” = 65, but ASCII “a” = 97).

This means that if you are comparing “apples” with “Pears”, the “Pears” value is the smaller
value, because of the upper case “P”.

Creative Basic

Bitwise Operators

There are three other operators which are available for use:

Bitwise /Logical Operator Meaning

& Logical AND
| Logical OR
Il Exclusive OR (XOR)

The logical AND operator (&) is used when you require two expressions to be TRUE in
order for a compound test to succeed. For example:

openconsole
cls

def a,b,c :int
a=2:b=723:c¢c=5

if (a < c) & (b = 7) then print "success"
do:until inkey$ <> ""

closeconsole
end

In this example, variable ‘a’ is less than ‘c’ AND ‘b’ does equal 7 - so both expressions are
TRUE, and the word ‘success’ is printed.

' T ——

The logical OR operator (|)is frequently used to combine several style parameters for
Windows and controls.

For example, when you create a Window, there are a number of ‘flags’ you can specify to
set how the window is arranged.

Here’'s an example:
WINDOW winl, 0, 0,350,350, | | ,0,"Example",main

The parameter specifies the window is sizeable.
will display the window minimising icon at the top right of the window, and
displays the maximising icon.

Each of these flags is an integer constant, the values being carefully chosen so that they
can be combined to bring each feature into operation.

So = 0x40000 (in Hexadecimal), = 0x20000, and =0x10000
(You can look them up in a list of Window’s constants).

If you combine these using the logical OR (|) operator, as in the example, you will get an
overall flag value of 0x70000.

You could just use this ‘magic number’ instead of writing | |

It would give the same window arrangement, but | prefer to use each flag separately
because it’s easier to understand what’s happening.

Creative Basic Page 10

‘<l ———

Now | have to say, the logical operator XOR (||) is not often used. | can’t recall ever having
used it - so I've had to look around for any useful applications.

You can express the outcome of an exclusive or (XOR) logical operation like this:
if a is true and b is true then (a XOR b) is false

if a is false and b is false then (a XOR b) is false

if a is false and b is true then (a XOR b) is true

if a is true and b is false then (a XOR b) is true

Incidentally, you can set a variable to zero by XOR-ing it with itself.
So, (aXOR a) =0 That’s very interesting, but it seems easier to just say a = 0!

One possible use is monitoring the status of a modem, or some other equipment, and
storing the status of all lines in the bits of a variable ‘status’ as ‘0’ and ‘1”.

Then, in a timing loop, you can read the ‘currentstatus’, and XOR it with the initial status to
see if anything has changed.

If any bit has changed, the result of the XOR test will be non-zero. If nothing has changed
the result will be zero, since (according to the above truth table), if both sets of bits are the
same, all bits in the result will be ‘0’.

The bitwise XOR operation is probably more useful than the logical XOR operation.

When operating at the bit level, the XOR truth table is:

1 Xor
1 Xor
0 Xor
0 Xor

oORropRr

oORrPro

Use can be made of this in a simple encryption method.

The method takes all 8 bits of each text character and XOR’s them with the 8 bits from a
chosen keyword character.

For example, using a ‘key’ character bit pattern of * 01010101°
(11111111 XOR 01010101) produces the encoded bit pattern 10101010

Once you have the encrypted result, if you XOR again using the same key, you recreate the
original value.

10101010 (Old Result) XOR 01010101 (Key) gives the original result 11111111.

We need a test program to try this out ..

Creative Basic Page 11

So here’s the test program:

openconsole
cls
autodefine "off"

def key$,code$,text$:string

" declare user function encrypt ..
declare encrypt(x$ as string,k$ as string)

' choose an encryption key ..
key$ = "shazam"
text$ = "Mary had a little lamb"

print "Original text: ",text$

"encrypt the text ..
code$ = encrypt(text$,key$)

print:print "Coded Text:"
print code$:print

'now convert the code$ back again ..
print "Decoded text : ",encrypt(code$.key$)

do:until inkey$ <> ""
closeconsole
end

sub encrypt(x$ as string,k$ as string)
def textlen,keylen,kchar: int
def a$,b§,ret:string

"encrypts (or decrypts) x$ by XOR'ing with k§ ..
keylen = len(k$)

textlen = len(x$)

fori=1 to textlen

a$ = mid$(x$,i,1) ' take each x$ character in turn
kchar =(i- 1) % keylen + 1 :' calculate the next key character
b$ = midS$(key$,kchar,1) ;' get the next character from the key

' convert the characters to ASCII, XOR them, and convert to a character again
if a$ = b$
ret = ret + a$
else
ret = ret + chr$(asc(a$) || asc(b$))

endif
next i &

return ret \ 'ﬁb"

#

| don’t think it would slow down a cryptologist for long, but it’s interesting nevertheless.

Creative Basic Page 12

	Mathematics
	Getting Started
	Statements and Expressions
	Arithmetic Operators
	Operator Precedence
	Maths Functions
	Making your own Functions
	Precision
	Trigonometric Functions
	Logical Operators

