
Creative Basic Page 1

Graphical User Interface - Part 1
In this section, we consider the Graphical User Interface (GUI)
facilities offered by Creative Basic.

This includes normal Windows, Dialog Windows, and a range
of controls such as Buttons, Text Boxes, Edit Boxes, Rich Edit
Boxes, Scroll Bars, Radio Buttons, Check Boxes, List Boxes,
Combo Boxes, Toolbars, and Status Windows.

Let’s begin Part 1 with the Windows which hold the controls.

Windows
Windows are the user’s interface to the computational and
graphics power of the computer.

Everyone is familiar with using Windows these days - but their
are several types of Window that programmer can use.

Normal Windows
A normal Window is easily recognised. It can take up all of the screen, or just part of it..

Windows vary in style, but usually comprise a number of standard parts, as in the following
diagram.

1. Menu bar 2. System Menu 3. Caption Bar

4. Minimise button 5. Maximise button 6. Close button

7. Scroll Bar 8. Border 9. Workspace

Creative Basic Page 2

You will probably recognise this from an earlier chapter of the user guide notes.

Two things to note. In this example, the style only provides for a window that can be resized
and minimised. If we needed to provide an option for it to be maximised, the parameter
@maxbox would have been included.

Also notice that the window ‘x’ co-ordinate is set to -600 (the width of the window). The
reason for this, is to position the window off-screen during the setup period, to avoid screen
flashing. If you use this trick, take care to re-position the window afterwards - otherwise it
will be off to the left of the screen and invisible - so you can’t close it (very embarrassing).

The example window’s ‘parent’ flag is set to ‘0’, since this window has no parent. This
parameter is only set when you create a ‘Child’ window. We’ll take a look a this shortly.

Here’s the code to create a simple window ..

' Normal window
def w:window
def wstyle:int

wstyle = @size|@minbox
' open a window ..
window w,-600,0,600,400,wstyle,0,"Simple Window",messages
setwindowcolor w,rgb(0,60,190)
centerwindow w

control w,"B,Exit,(600-70)/2,310,70,30,0,1"

run = 1

waituntil run = 0
closewindow w
END

sub messages
' routine to handle all the windows messages ..
select @class
 case @idclosewindow

run = 0
 case @idcontrol
 select @controlID
 case 1

run = 0
 endselect
endselect
return

Creative Basic Page 3

Window Style Flags
Here’s a list of the style values that can be set for a window ..

Value Purpose / Style
@SIZE Creates a window that is re-sizable
@MINBOX The window has a minimize box
@MAXBOX The window has a maximize box
@MINIMIZED Creates a window that is initially minimized
@MAXIMIZED Creates a window that is initially maximized
@CAPTION (Default). Creates a window with a caption
@NOCAPTION Creates a window with no caption bar
@SYSMENU (Default). Creates a standard system menu
@BORDER Creates a bordered window.

Use with the @NOCAPTION flag
@HSCROLL Window has a horizontal scroll bar
@VSCROLL Window has a vertical scroll bar
@MDIFRAME Creates a window that can contain other windows.
@USEDEFAULT Child windows can use this for the 'left' parameter to

let windows pick a default size for the window
@TOOLWINDOW Creates a window with a half-sized caption.
@NOAUTODRAW Allows your program to handle @IDPAINT messages
@BROWSER Creates a window with an embedded internet

explorer window.

Normally, a window will have a caption bar at the top, and this is used to click and drag the
window around the screen.

So what happens if you use the @NOCAPTION option?
If there’s no caption, the window can’t be moved - unless we use a little bit of API magic.

The following example program sends a message to the window, making it think a caption
does exist. Then when the left mouse button is pressed, the window can be moved around
the screen.

In this example, you will also see that the window remains on screen as the topmost window,
no matter what other windows exist. The small button on the right closes the window.

Creative Basic Page 4

No Caption Clock Display

' Desktop (dragable) Time Display
' GWS - September 2007 - Creative Basic code

def w:window
def time:string
def flags,false,true,drag,xm,ym:int
def x,y,wid,hgt,xn,yn,scrW,scrH:int

getscreensize scrW,scrH

declare "user32",SetWindowPos(win:window,ins:int,x:int,y:int,wid:int,hgt:int,flags:int),int

window w,(scrW-60)/2,0,60,18,@nocaption,0,"",main
control w,"B,,50,0,10,18,0,1"
setwindowcolor w, 0x555555

setid "SWP_NOMOVE",2
setid "SWP_NOSIZE",1
setid "HWND_TOPMOST",-1
setid "WM_NCLBUTTONDOWN",0xA1
setid "HTCAPTION",2

false = (1 = 2)
true = not false

drag = false

flags = @SWP_NOMOVE|@SWP_NOSIZE
SetWindowPos(w,@HWND_TOPMOST,0,0,0,0,flags)

frontpen w, 0xffff00
setfont w, "Times New Roman",8,400

timeset
starttimer w,10000,1

run = 1

waituntil run = 0
stoptimer w,1
closewindow w
END

SUB main
select @CLASS
 case @IDCLOSEWINDOW

run = 0
 case @IDCONTROL
 select @CONTROLID
 case 1

run = 0
 endselect
 case @IDLBUTTONDN
' To Move the Window by dragging it .. (Steve's method)
 SendMessage w, @WM_NCLBUTTONDOWN,@HTCAPTION,0
 case @idtimer

timeset
endselect
RETURN

sub timeset
' set time in HH.MM format and display it ..

time = left$(time$,5)
 move w,12,1
 print w,time
return

Creative Basic Page 5

Child Windows
Once you’ve defined a main window, you can set up one or more ‘child’ windows within it.

The main window caters for the whole application, and each child window will usually tackle
one task within the whole program. A child window can be closed when it’s task is done,
and re-opened again if required. The main window remains active until it is closed.

If the main window is closed, all it’s child windows will close as well.

Here’s a simple test program to illustrate a main program with one child window ..

' Child window example

def w,child:window
def wstyle:int

wstyle = @size|@minbox
' open main window ..
window w,-600,0,600,400,wstyle,0,"Simple Window",messages
setwindowcolor w,rgb(0,60,190)
centerwindow w
' open child window ..
window child,(600-300)/2,50,300,200,wstyle,w,"Child Window",childmessages
setwindowcolor child,rgb(0,160,190)

control w,"B,Exit,(600-70)/2,310,70,30,0,1"

run = 1

waituntil run = 0
closewindow w
END

sub messages
' routine to handle the main window messages ..
select @class
 case @idclosewindow

run = 0
 case @idcontrol
 select @controlID
 case 1

run = 0
 endselect
endselect
return

sub childmessages
' routine to handle the child window messages ..
select @class
 case @idclosewindow
 closewindow child
endselect
return

This example program does nothing except display a child window, which is a fully
functional window, which can be moved and resized. In this simple example, once you
close it, it’s gone.

In a working program, it would do something useful, and could be called more than once.
It could be used for communicating a small amount of information with the user - like getting
a name, offering a choice , or something like that. It’s a window within a window.

Creative Basic Page 6

This is a window that offers the user a menu of choices of
different aspects of the application using a purpose designed
window for each subject.

For example, a Morse code program might offer a menu bar
with the items, Preferences, Reading, Sending, and Help.
There could be sub-menu items such as, Listen to Letters,
Listen to Numbers, etc ..

There doesn’t have to be a menu bar - you could use controls
on the various windows to bring up other child windows.

When the user is finished with that subject, the child window is
closed and the user is returned to the main window.

All of the child windows are re-usable, and are automatically
closed when the main window closes.

These multiple ‘child’ windows usually play a more significant role in the application than the
simple floating window in our previous example.

It’s only a simple bit of code, so the windows do nothing. In a real program, they would offer
a significant function such as a table, a graph, a calculation, some data entry, or similar part
of the application.

The windows are independent, and can be closed and re-opened as required. Normally,
each child window would occupy the whole screen.

There is an alternative approach using the Multiple Document Interface, or MDI facility.
(See the user guide and the example ‘mdidemo.cba’ if you would like to try this).

MDI is not a method I’ve tried. One disadvantage of this sort of user interface, is that it’s easy
to ‘lose’ windows due to overlapping. What you want to see is often hidden.

It’s for this reason Microsoft has been phasing out this sort of interface from its own products.

Here’s an outline program, which shows a structure using two child windows and an ‘about’
window.

A Frame Window

Creative Basic Page 7

' An example of Child windows in a Frame window

def Frame,c1,c2,c3:window
def i,style,run:int
def wW,wH,bW,bH:int
def textW,textH:int
def a$,b$,c$,title$:string

' set button size ..
bW = 80
bH = 30
' set window size ..
wW = 800
wH = 300

' open main Frame window ..
mainset
' open other child windows ..
otherset

run = 1

waituntil run = 0
closewindow frame :' this also closes all child windows
END

' main window messages ..
sub FrameMessages
 select @class
 case @idclosewindow

run = 0
 case @idcontrol
 select @controlid
 case 1
' Main Window Exit clicked ..

run = 0
 endselect
 case @idmenupick
 select @menunum
 case 10
 showwindow c3, @swrestore :' show the About panel ..
 starttimer c3,2000,1
 case 100 :' File menu Exit

run = 0
 case 1
 showwindow c1, @swrestore :' open the Child 1 Window ..
 case 2
 showwindow c2, @swrestore :' open the Child 2 Window ..
 endselect
 endselect
return

sub c1messages
' Child Window 1 message handler ..
select @class
 case @idcontrol
 select @controlid
 case 1
 showwindow c1, @swhide
 endselect
endselect
return

(Continued)

Child Windows in a Frame Example Program

Creative Basic Page 8

... continuation

sub c2messages
' Child Window 2 message handler ..
select @class
 case @idcontrol
 select @controlid
 case 1
 showwindow c2, @swhide
 endselect
endselect
return

sub c3messages
' process the About box messages ...
select @class
 case @idtimer
' timer used to display the about box ..
 showwindow c3, @swhide
 stoptimer c3,1
endselect
return

sub mainset
' set up the main window ..
style = @minbox
window frame,-wW,0,wW,wH,style,0,"Frame Window Example",FrameMessages
setwindowcolor frame,rgb(0,0,80)

' set intro text ...
frontpen frame, rgb(20,130,255)
drawmode frame,@TRANSPARENT
title$ = "Child Window Example"
setfont frame, "Arial",18,700,0
gettextsize frame, title$, textW, textH
move frame,(wW - textW)/2,30
print frame,title$

' main menu ..
menu frame,"T,File,0,0","I,Exit,0,100"
insertmenu frame,1,"T,Select,0,0","I,Child 1,0,1","I,Child 2,0,2"
insertmenu frame,2,"T,Help,0,0","I,About,0,10"

control frame,"B,Exit,(wW-bW)/2,185,bW,bH,@CTLBTNFLAT,1"
setfont frame, "MS Sans Serif",10,600,0,1
setcontrolcolor frame,1,rgb(100,200,250),rgb(10,10,120)
centerwindow frame

return

(Continued)

Creative Basic Page 9

... continuation
sub OtherSet
' set up other child windows ..

' create child window 1 ..
window c1,20,20,200,200,@nocaption,frame,"",c1messages
setwindowcolor c1, rgb(150,150,120)
control c1,"B,Close,(200-bW)/2,150,bW,bH,@CTLBTNFLAT,1"
setfont c1, "MS Sans Serif",10,600,0,1
setcontrolcolor c1,1,rgb(100,200,250),rgb(10,100,120)
setfont c1, "MS Sans Serif",12,600
frontpen c1,rgb(0,0,0)
a$ = "Child 1"
gettextsize c1,a$,textW,textH
move c1,(200-textW)/2,20
print c1, a$
showwindow c1,@swhide :' hide the Child 1 window until needed

' create child window 2 ..
window c2,575,20,200,200,@nocaption,frame,"",c2messages
setwindowcolor c2, rgb(150,150,120)
control c2,"B,Close,(200-bW)/2,150,bW,bH,@CTLBTNFLAT,1"
setfont c2, "MS Sans Serif",10,600,0,1
setcontrolcolor c2,1,rgb(100,200,250),rgb(10,100,120)
setfont c2, "MS Sans Serif",12,600
frontpen c2,rgb(0,0,0)
a$ = "Child 2"
gettextsize c2,a$,textW,textH
move c2,(200-textW)/2,20
print c2, a$
showwindow c2,@swhide :' hide the Child 2 window until needed

' create the About window (Child 3)..
window c3,(wW-300)/2,60,300,120,@nocaption,frame,"",c3messages
setwindowcolor c3, rgb(50,150,120)
control c3,"T,,15,15,270,90,@cteditcenter,1" :' create the About text box ..
setfont c3, "MS Sans Serif",8,500,0,1
setcontrolcolor c3,1,rgb(50,170,255),rgb(0,50,50)
a$ = chr$(10) + "Written in Creative Basic" + chr$(10)
b$ = "Make CBasic your programming tool."
c$ = a$ + "December 2013" + chr$(10) + Chr$(10) + b$
setcontroltext c3,1,c$
showwindow c3,@swhide :' hide the About box until needed

return

Creative Basic Page 10

Dialog Windows
I recommend that you use normal windows instead of Dialog boxes.

A Dialog box is intended to obtain some necessary data, before an
application can continue - like “Enter Password”. It blocks any
further user interaction with an application, until the required
information is entered.

I’ll demonstrate how this is better achieved using a normal window
instead of a Dialog box.

' Example using a normal Window instead of a Dialog

def w,d:window
def wstyle,i:int
def textW,textH:int
def a$,pass:string

' open main window ..
mainset
' set up the dialog equivalent window ..
dialset

run = 1

waituntil run = 0
closewindow w
END

sub Mainset
' set up the main application window ..
wstyle = @minbox
window w,-600,0,600,400,wstyle,0,"Dialog Equivalent Window",MainMessages
setwindowcolor w,rgb(0,60,190)
centerwindow w
control w,"B,Exit,(600-100)*2/3,290,100,30,0,1"
control w,"B,Get Password,(600-100)/3,290,100,30,0,2"

return

sub dialset
' set up a small window as a dialog equivalent ..
' not possible with a dialog, has to be done when initialised
window d,0,0,200,120,@NOCAPTION,w,"",dialoghandler
control d,"E,,(200-100)/2,40,100,25,@CTEDITCENTER,1"
control d,"B,OK,(200-50)/2,90,50,20,0,2"
control d,"T,Enter Password,(200-100)/2,10,100,25,0x200|@CTEDITCENTER,3"
setwindowcolor d,rgb(100,160,240)
setcontrolcolor d,1,0,rgb(100,150,180)
setcontrolcolor d,3,0,rgb(100,160,240)
setcontroltext d,1,""
rect d,2,3,196,125,0x0,rgb(100,160,240) :' a graphic, but not in a Dialog
setsize d,(600-200)/2,80,200,130
showwindow d,@swhide

return

(Continued)

Creative Basic Page 11

sub MainMessages
select @class
 case @idclosewindow

run = 0
 case @idcontrol
 select @controlID
 case 1

run = 0
 case 2 :' the Get Password button was clicked
 setcontroltext d,1,""
 setfocus d,1
 showwindow d,@swrestore
 endselect
endselect
return

sub dialoghandler
select @CLASS
 case @IDCONTROL
 if (@CONTROLID = 2) :' the OK button was clicked

pass = getcontroltext(d,1)
 if (pass = "") :' check that something has been entered ..
 setfocus d,1 :' otherwise do nothing
 return
 endif
' check for a valid password here - if invalid, display an error message
' assuming the password is valid, hide the dialog window
' and display the password in the main window
 showwindow d,@swhide
 frontpen w, rgb(160,160,255)
 setfont w, "Arial",14,700,0

a$ = "The Password is: " + pass
 gettextsize w, a$, textW, textH
 move w,(600-textW)/2,80
 print w,a$

a$ = "You're clear to go .."
 gettextsize w, a$, textW, textH
 move w,(600-textW)/2,130
 print w,a$
' if password is valid, you could hide the get password button at this point.
 showwindow w,@SWHIDE,2 :' hide the get password button
 setsize w,(600-100)/2,290,100,30,1 :' center the Exit button
 endif
endselect

return

... continuation

I’m comfortable with this example - it has none of the snags that can arise when using a
Dialog box. Problems with the Tab, ESC and Enter keys for example which usually need
workarounds.

Next we’ll take a look at the useful Message Box facility.

Creative Basic Page 12

Message Boxes
Message boxes are very useful things, not only for messages to the
user as their name suggest, but for displaying content information
of selected variables while testing your program.

Normally, the message box will display a warning message and
offer the user a choice of options. The various options return a
value enabling the program to carry out the appropriate action.

A message box is easily generated by inserting a message box
statement in your program.

MESSAGEBOX window, text, caption {,flags}

The Text, is what you want to say to the user. The caption describes what the message
relates to, and the flags are used to show a selection of several buttons and icons which
indicate the type of message.

Here is a list of the Messagebox Button flags that are available ..

Description Hexadecimal
Value

Integer
Value

OK 0x00000000 0

OK, and Cancel 0x00000001 1

Abort, Retry, and Ignore 0x00000002 2

Yes, No, and Cancel 0x00000003 3

Yes, and No 0x00000004 4

Retry, and Cancel 0x00000005 5

Cancel, Try Again, and Continue 0x00000006 6

The Button values can be added to Icon values (shown in the following table), to display a
desired Icon as well as the buttons.

Creative Basic Page 13

Here are the Messagebox Icon Flags that are available ..

Description Hexadecimal
Value

Integer
Value

Error, or Stop 0x00000010 16

Question 0x00000020 32

Exclamation 0x00000030 48

Information 0x00000040 64

To set the focus to a desired button left to right, add in one of the following Default Button

Description Hexadecimal
Value

Integer
Value

1st button (default) 0x00000000 0

2nd button 0x00000100 256

3rd button 0x00000200 512

You may require the Messagebox to take up the top window position, so that it can’t be
hidden behind some other window ..

Description Hexadecimal
Value

Integer
Value

MessageBox Topmost 0x00040000 262144

Combining hexadecimal values is easy. You don’t need to actually add any values together
arithmetically, you just insert each hex digit into the correct position in the one flag value.

For example, to combine Yes and No Buttons (0x00000004),
With an Information Icon (0x00000040),
And set the focus to the NO Button (second from the left) (0x00000100)

The complete flag value then becomes .. 0x00000144
(Or in integer values (4 + 64 + 256) = 324)

To make the Messagebox the topmost window, just add in the Topmost value (0x00040000)
And you get the final hex value .. 0x00040144

Notice that the hexadecimal values just slip neatly into their own positions. You have to do
a bit of arithmetic if you use equivalent the integer values.

Creative Basic Page 14

Here’s a small window using the above example, showing a Messagebox with Yes, No
Buttons, an Information Icon, the focus set to the Second button (No), and the
Messagebox set to the Top Window position ..

' MessageBox Example window

def w:window
def wstyle,i:int

wstyle = @minbox
window w,-600,0,600,400,wstyle,0,"MessageBox Example",messages
setwindowcolor w,rgb(0,60,190)
centerwindow w

control w,"B,Exit,(600-70)/2,310,70,30,0,1"

messagebox w,"Delete the file?","Confirm",0x00040144

run = 1

waituntil run = 0
closewindow w
END

sub messages
select @class
 case @idclosewindow

run = 0
 case @idcontrol
 select @controlID
 case 1

run = 0
 endselect
endselect
RETURN

That completes the discussion of the containing window types.

In Part 2 of the GUI guide, we take a look at the various Controls available in Creative Basic.

	Graphical User Interface - Part 1
	Windows
	Normal Windows

	Window Style Flags
	No Caption Clock Display

	Child Windows
	A Frame Window
	Child Windows in a Frame Example Program

	Dialog Windows
	Message Boxes

