

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

IBasic Monthly -Volume 1, Issue 2
Editor – Tony Jones - editor@ibasicmonthly.net

Assistant Editor – Rick Lett -rickl@ibasicmonthly.net

IBasic Monthly copyright  2002, Tony Jones. All rights reserved. Reproduction in whole or part is strictly prohibited. All
works submitted for inclusion in IBasic Monthly remain the property of the original authors. By submitting your work for
publication you are granting IBasic Monthly the one time, non-exclusive right to reproduce and publish your work in IBasic
Monthly.

Submission Guidelines
If you would like to have your work considered for publication in IBasic Monthly, please forward your submission in RTF,
DOC, HTML or TXT format to: submissions@ibasicmonthly.net. IBasic Monthly is published on the 15th of every month. All
submissions must be in by the 8th of the month in order to be considered for the current issue.

In This Issue

Editors REMarks .. 2
Developers Notes ... 3
Programming Guru’s and Eclectic Thoughts... 4
Soul In Torment .. 6
Tips And Tricks... 11
Inside The Windows API.. 21
My Adventures With IBasic... 25
JavaScript Jukebox... 29
ibHash: Faking Associative Arrays With IStrings... 40
LINKED LISTS Made Easy... 45
The IBasic Users Profile Page .. 57
FTP NOW!... 58
Of Jigsaw Puzzles, Mice And Me... 101
Freeware Reviews.. 115
Re-Sizing Windows To Fit The Screen.. 116
Christmas Greetings ... 126
Coming Next Month.. 131

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 2

Editors REMarks

 Hello and welcome to the 2nd issue of IBasic Monthly! Judging from the response to the
first issue, I think we are off to a fantastic start! The response was simply overwhelming and
more than I could have ever imagined. Thanks to all of you for your support, kind comments and
of course your submissions.

 The response to the first issue was so positive that IBasic Monthly now has its own home
on the web at www.ibasicmonthly.net, where you’ll always be able to find the latest issue, along
with the accompanying source code, the online edition of IBasic Monthly and back issues.

 In addition to having our own home on the web, we’ve had to expand our staff as well. I
would like to take this opportunity to introduce and welcome Rick Lett to IBasic Monthly. Rick
will be taking on the role of Assistant Editor. He’s been a valuable asset and great help with this
month’s issue. So when you see him on the forums or in the chat room, give him a pat on the
back for a job well done.

You’ll also notice that we are sporting a new logo this month, courteousy of Dan
Silverman. He did an outstanding job on it and we would like to send a big thank you to him for
donating his time and work to IBasic Monthly!

 We have a huge issue for you this month, packed with articles, code and information.
Bizzy continues his tutorial on using Linked List and takes us step by step to finishing up his ftp
program in part 2 of FTP Now! John Sylvester gives us a different perspective on what it takes to
write a program in Soul In Torment and we continue our journey with Rick Lett in Adventures In
IBasic. Matt Cox demonstrates how to determine the version of Windows in Inside The
Windows API and Jerry Muelver provides us with a way to use use hashes with ibHash: Faking
Associative Arrays In IBasic. Paul Love has a puzzle for you in Of Jigsaw Puzzles, Mice And
Me, plus he shows us how we can use Javascript in our IBasic programs in Javascript Jukebox.
And if you’ve ever had trouble keeping your controls aligned in a window, then you’ll definitely
want yo read Graham Sutton’s article, Re-Sizing Windows To Fit The Screen. And you don’t
want to miss our new features, including Developers Notes by Paul Turley, along with Tips And
Tricks, Freeware Reviews and The IBasic User Profile Page.

Sincerely,
 7RQ\�-RQHV�
 Tony Jones
 Editor – IBasic Monthly

http://www.ibasicmonthly.net/

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 3

Developers Notes

By

Paul Turley

 This is the first developer’s notes column and this month I am going to just ramble on a
bit. When the editor of IBasic Monthly first aproached me with the idea of a regular monthly
column I was going to decline. But after thinking about if for a while I figured it would be a
good place to share my thoughts and ideas on IBasic and the world in general.
 The end of the year is fast approaching and development of IBasic Pro is proceeding at a
steady pace. As I had mentioned on the Pyxia Forums I hope to have the first beta version ready
by Christmas. The general release is slated for sometime in January, depending on how the beta
release shapes up between now and then. Everyone that has pre-registered IBasic Pro will have a
chance to try out the beta release.
 For those that may be wondering about the future of IBasic Standard, which is the current
software with a new name, you can put your fears to rest. Development on IBasic Standard will
resume as soon as Pro is released. I have a lot of exciting new plans for IBasic Standard that will
keep you happily coding along for years to come.
 As the holidays approach we turn our thoughts away from programming and computers.
Family regains its importance and many of us take a step back to consider all of the events that
have shaped our lives over the past year. My family is no different and relatives I have not heard
from since last Christmas begin sending me mail, in the form of greeting cards or nice letters
with pictures. A few technologically adept members of my family have resorted to sending
electronic cards and greetings. While very nice I still prefer the time honored tradition of licking
a stamp and mailing the card. I actually save every card ever sent to me, collecting dust in some
shoe box.
 What does this have to do with IBasic or programming? The IBasic community is one
very big family now. And while I can’t send a greeting card to all of you this year, I will be
giving away some registrations to IBasic and IBasic Pro to those that might not otherwise be able
to afford it. I invite all reading this to follow along and give of yourself and your time in some
small way to help others. Perhaps next year when you look at the events that shaped your lives
you will remember the happiness you were able to share with someone in need.

Happy holidays one and all,
Paul Turley
Pyxia Development

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 4

Opinion

Programming Guru’s and Eclectic Thoughts

By

Rick Lett

 Hi, just thought I would like to say a few words about some stuff that’s been on my mind
lately and may be fodder for discussion. Mostly about my search for a programming Language
and peoples fierce loyalty to them.

 I'm sure most of you did as I did and looked around at other forms of Basic before
making your choice and may have tried others. I for one bought 2 along with IBasic and tried
them both but for some reason that I can't explain I kept coming back to IBasic, I just like it. It’s
like a puzzle to me that I need to figure out how to solve, I guess.

 Anyway, one of the things that I did do was look at the forums and support of the
other languages and while those things are really not part of what I want to write about, that in
the end is what made my decision for me. The thing that struck me in a lot of those other forums
was the amount of bashing going on of other programming languages and that was kind of
disturbing to me in a way, and I thought about why people do that.

 What are we programming for, is one Basic better than another, and what as
individuals do we want to get from doing this? For beginners it can be frustrating and for
experienced users I'm sure very satisfying but you still see the discussion of which is better and
which one stinks!

 Paraphrasing Paul Turley a little, any good programmer should be able to
accomplish a needed task with whatever tools are provided him.Thats the Pros though, how bout
others? The not Pros? Maybe compelled to it like I was or maybe could better understand
whatever you're using over the others?

 Why your using what you're using is not as important I would think as much as
what are you trying to accomplish. The purpose of programming to allow a user to interface with
a computer in a useful or entertaining way so as to facilitate its ease of interface. Programming is
not an end to itself, something useful has to be created. And a good programmer has to be well
versed in the subject that he's trying to create. That to me is what separates the hobbyist from the

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 5

Pro I guess. How many of us on the IB forums could even conceive of writing a programming
language, or any of the other forums? I’m sure there are some who could write massive code for
whatever purpose they envision, but not all can.

 I for one am just learning, and I can’t tell you how much I admire the skill and use
of IB or any other language being used by anyone who is passionate about that language, let
alone someone who can create a tool that so many others use and enjoy. But I for one don’t see it
as one upmanship or elitism that one language is used and better than another. I see it as a
comfort issue for the folks out there that are still learning. Someone who is well versed in
programming knows that there is no perfect single language for all users. And can adapt with the
situation as needed to accomplish what needs to be done.

 So there I would think is the crux of the issue. In my opinion (and humble it is!) I
believe the bashing is done mostly by people who are just starting to become comfortable with
what their using but not quite ready to become serious about it. Or are uncomfortable with the
perceived limitations of what they’ re using. I would think that in this medium any tool that will
do the job is the first place Pros go to. IB is written in a mix and is done so for a reason, because
that was the way to best accomplish the goal. And other Basics I'm sure have a mix that they are
written in. I for one am glad that there are others to choose from so that people have a choice as
to what's more comfortable to use. But as much as I like IB I hope to someday learn other
methods of programming so I can be more versatile when I need to be.

So, while others are bashing various Basic languages I'm going to say Thank You Paul for
offering IB so I can take that first step in programming and thanks for your help, and I would
suggest others thank the developers for their preferred language also.

The views and ideas expressed in this article are those of the author and may not represent the
views of IBasic Monthly. If you have any comments or suggestions you may email the author
rickl@ibasicmonthly.com. By submitting a response you give IBasic Monthly permission to
publish in a letters to the editor format in a subsequent issue and to edit for space and content.
IBasic Monthly is intended for G type viewing so please make all comments constructive.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 6

Soul In Torment

By

John P. ’Tuddypat’ Sylvester

To be slightly different, I thought it would be good to try to explain the thought processes and
decisions and dark forces at work during the development of a project rather than the technical
details of programming. Am I the only one to suffer this way?

Let’s start with a brief history; I trained as an Electronics Fitter and now work as a Field Service
Engineer in Computers. I’ve been dipping in and out of programming in various languages over
the last 25 years, using machine code on Raytheon computers (well actually binary, on a CE
Panel, for the uninitiated, that’ s a box with lots of switches and lots of pretty lights). I've also
done machine code on Z80, 6509. I've had a go at assembly on PDP-11 micro as well as 6809
and 8086 processors. At the higher end, I started on BASIC, MSBASIC, C, C++, Pascal, Java++
and Smalltalk and probably a few others on the way. I achieved a reasonable understanding of
the languages and their use but never achieved expert status in any, I haven't even mastered
English that well either. I have completed courses covering software engineering and software
development. Old habits die hard, I still tend to plan at the keyboard and solve problems on the
fly, besides it’ s a lot more fun thinking on your feet than planning on paper then committing to
coding. One day I will have the resolve to do it properly, until then, this is how it goes…

I attempted at several stages to enter into Windows programming but it never seemed to gel for
me until, yes, you've guessed it, IBASIC came along, it was like a fog being lifted. It took only
a little while to achieve a degree of familiarity with the language and syntax it was not long
before I was plunging headlong where previously I feared to go. I started writing little test
programs to try out my new knowledge and plaything. After numerous modifications to the
sample programs I decided the time had come to start a proper project.

The project was a Stock Control program. This was needed on a personal basis, since I carry a
fair amount of parts with me and I have about thirty parts a week going in and out. At times more
comes in than goes out and it takes some doing to keep track of them, like what I have and what
job they're for. With previous companies they always managed to ask where a part was that I
had had several months before and it meant going through a mountain of paperwork to track it
down. Basically all the program had to do was allow me to record receipts, usage and disposal
of parts, easy!

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 7

The Stock Control project started well but soon I had a source file that was getting a little
unwieldy, so I decided to break it up into smaller files, each file holding a single entity of the
program. This meant that I could list the program and any changes would only require re-listing
the changed file.

Once I had spent a few nights reorganising things I was left with around sixty files to manage.
This in itself was proving a task just managing the update of the files. However, that is another
problem and maybe another article, (that will keep Tony happy). Having made life easier in one
respect I now had sixty files to join together before I could run the source. Well you can imagine
the command line:

 ’copy file1.txt+file2.text+file3.txt+file4.text etc. etc. etc’

So I wrote a batch file, but if I added a file I had to edit the batch file, this was starting to be a
nightmare. So the Stock Control went on hold as I started to develop another program to make
things easier. Of course I was deluding myself, this started well until I realised I had to have
someway of marking the files and ensuring they were in the right order. I started entering the
world of directory listings.

What I wanted was a routine that would list files, allow me to select them and output the list of
selected files in a string, ready to process. It so happens that IBASIC has two very handy
instructions, FINDOPEN and FINDNEXT.

With these two instructions one can open a directory and list all files within that directory, as a
start I used a directory containing the source files for the Stock Control program. The routine
worked like a well-oiled machine. However, it was not long before dissatisfaction set in and I
realised it would be better if I could traverse through directories. So I modified it based on the
’dirselector' example that comes with IBASIC. It was then I realised the problem … FINDOPEN
lists everything in a directory including sub-directories, and there was no way to differentiate
between a directory and a file with no extension. I'd reached a dead end.

There was only one thing to do give up and do something useful. So I went and read the forum,
surfed the internet, played games and everything else one does. However, fate would not let go
that easily, one of the forum users asked the question if anyone knew about directory listings and
I mentioned that I had such a beast, although not perfect, it could be useful or at least show the
way to go about it. I emailed it to him. I also remarked on the forum that if anyone else was
interested let me know. That was the mistake! It's like jumping off a cliff, as your feet leave
Terra Firma, you wish you had thought a little more of the consequences as you plummet
headlong towards the unknown. Thanks to a kind offer by one of the guru's of the forum,
'Fletchie', he offered to post it on his website for all to download.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 8

It wasn’t long before a couple of users reported problems, mainly under XP. There had been
some comments about the unreliability of the SetCurrentDirectory API, which for some
inexplicable reason, I had used. Looking through the code I found that it was redundant along
with some other bits of code. This is what happens when you work from the keyboard. Anyway
I decided at that point to redesign the whole thing and of course having already displayed the
ability to open my mouth and insert both feet, I put this on the forum. Well that meant I had to
do something now.

So I started with a complete blank sheet and proceeded to build it from scratch.

I decided simplicity was the key; it took the form of three list boxes, one for the drives, one for
the directories and one for the files. Well of course having done most of the experimentation on
the original version, it only needed refining. I decided not to use FINDOPEN/FINDNEXT
functions and rely on sending messages to the list box using flags to control the listings. These
flags had been gleaned from several sources the Microsoft web site and the ’include’ files for
Borland C++ (winuser.h). Of course, when implemented the lists behaved as expected, but they
had short names and were unsorted, still it was a start. The sorting was easy to get round, change
the flag on the list box to include the sort ability. It worked fine until I decided to list the
\windows\system directory. Well it was fun, the file names started doing a Bossa Nova
movement or was it the Cha-Cha? As each new name was entered the file names shuffled
around and the slide bar at the side grew smaller and smaller as the shuffling intensified.
Eventually it stopped the dancing motion and the file names were displayed and sorted but my
eyes were dancing to the rhythm…this was not good.

I added two hidden list boxes with sort enabled (removing the sort from the main box), this
would allow the directories and files to be sorted quietly and out of the way. Once the
directories and files were listed in the hidden boxes it was just a matter of copying the names
from the hidden boxes to the view boxes. I have always been a great believer that no matter
what the program is if a finite time is needed to process, the user should be aware that something
was happening. As I selected the \windows\system directory the two main boxes went grey for a
while only seconds in reality but in electronics, computing and waiting, seconds often seem like
hours, in fact, it often is hours when the thing hangs and you have no indication what's going on
especially where grey boxes are concerned.

Anyway the result was worth waiting for, it finally displayed, all in order, the added advantage
was the directories were delimited by square brackets, easily identifiable as a directory, the
drives were shown delimited by square brackets and hyphens ([-a-]), this was getting better.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 9

The selection and changing of drives, directories and files was simple it was the formatting and
appearance of the results that was the challenge; the only thing to overcome now was the short
file names! To this end I delved into the mysteries of API. Using that wonderful program API
Viewer I found the GetLongPathNameA function call, so I incorporated into the code. The
sequence of events now went, read the directory into the sorted field then for each directory and
file as the entry was being copied from the hidden box to the visible box find the long name and
display that. To tidy things up, the directories were converted to upper case and files to lower
case during this transfer/conversion operation. Well you have to take the prettiness factor into
account! This worked until I tried to change the directory, then nothing happened, no
directories, no file names, only drives. After some thought and panic laden activity I discovered
that the long path names were not accepted by the directory list messages, so I now had to
convert the pathname back to the short version to be able to list the directories. Eventually I
managed to get the whole thing working, an elated sense of achievement arose inside me giving
me a nice warm feeling…oops back in a minute!

Of course it was not to last long, that little voice inside my head, no, not the 'Kill them all…' one,
the other one, the 'Why don't you make it do…' one, spoke.

'It would be much better if it were a single window!' and so I thought well instead of copying the
files and directories to their respective windows just copy them to the drive windows, which I
did…you should have seen the mess! I forgot the list box had been set to sort. A quick
adjustment and there it was working, of course I had to adjust all the selection routines to cater
for the new box. Anyway I was happy the project had been completed. Now why was I so
naïve? I posted the completed code onto the forum. It was received well, but there's always
someone, I shall not name them, your secret is safe with me 'Fletchie' suggested 'Why not make
it a component?' plus as a side comment 'Could add check boxes to allow the selection of drives,
directories, system and hidden files.'

Well always one to rise to a challenge, I had no idea about components, but what the hell, the
best way is by doing it. Any way before that I had to modify the code to allow the selection, this
wasn't too difficult since the code already existed and just needed so form of control. So the
dialog was modified to include the check boxes the code altered to read them and set up the
required messages. Within a while it was working like a dream…or nightmare…depending on
your point of view. Now was the time to look at it as a component. So I read up on the use of
components and converted it to a component, the actual conversion was straightforward; most of
the boring work was converting the names as agreed in the component code of practice that had
been generated within the forum. Once it was done, before making it into a component, I ran it
as a standard program, well my world crashed about me. No directories or files were displayed,
it was then I realised that my base path was not available to all the subroutines. Its surprising
how simple restrictions like, 'no global variables' causes a problem. I had all the subroutines

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 10

written but how could I pass the base path around without the use of a global variable? I
couldn’t! I thought about passing the path as a parameter but the path was needed within the
dialog handler, there was no way I could think of passing that parameter to the handler. I also
found I could not access the dialog from within the subroutines; I kept getting the message that
the dialog was not open. I had hit that brick wall… again!

 I decided that this challenge had me beat and posted on the forum that I could get no further and
I had no way of making this a component and added if anyone could help, it would be
appreciated? In true IBasic fashion a shining knight rode out of the mist and threw at my feet a
rope of hope… one Jerry Muelver, another Guru of the forums! He pointed me to his Wiki
website and a page about components. I searched through it to no avail, there was no more
information than I had already, and obviously components were not meant to be the complex
items I wanted them to be. At that moment I spotted a component by another veteran of the
forum, 'Kludge'.

In it he was giving a demo of using a custom control within a component, and there was the
answer I had been looking for. 'Kludge' had created a pseudo global variable by defining a user
type and storing it in memory, all that was needed was to be able to pass the pointer. This was
achieved by storing the pointer in the parent window's user data area, and all that was required
(not really that simple) was to find the parent and extract the pointer to the data in memory, there
also was the solution to my problem of the dialog not being open, a system variable giving the
present dialogs id!!! It took me a little while to understand what it did and how it fitted together
but after a short while it had all come together, it worked like a dream, I completed the
component packing and had tested it successfully, at last I had achieved my goal. I announced
the to the world that I had completed the project and now I was free to regain control of my life
and resume some sense of normality.

I think it only fair to give thanks to those who helped, to Paul (Pyxia) without whom this would
never have happened, to 'Fletchie' for the challenge, Jerry for the wiki web site and of course
'Kludge' who provided the solution. All these guys bear some responsibility for my torment and
without who, the project would never have started or finished and of course the other four
hundred odd users who unwittingly helped to solve problems with their entries on the forum.

Now where was I, oh yes! The Stock control program, but first I wonder if I can… … … … ..

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 11

Tips And Tricks

Simple Indexing Scheme

By

David “entiretech Harrison

I have been putting together a small program, partly to learn the syntax and possibilities and to
work out a couple of ideas and also to write a simple relational database in native IBasic code.
The program is a diary with space for an unlimited number of appointments for any given day.
The Diary dates are saved using a simple hashing algorithm, this needs a record for every date so
could have a number of blank entries, this is acceptable were it is reasonable to expect that most
records will contain data - Diary dates, invoice numbers etc. it is the quickest possible way of
retrieving a specific record, a simple calculation and you have the record number.

Any number of appointments can be added in a seperate table "related" to the main table by the
date (the key).

The problem was with keeping the list of appointments sorted this can be pretty slow. It occurred
to me that you could use a listbox as an array with automatic (quick) sorting. To collect the
appointment details for all dates I load a listbox from a file, the file contains the date and the
record number of the appointment data file, a binary search is used to find a starting position for
the search.

The basic idea is shown in the part program submitted; it is a simple indexing scheme.
The program loads a lot of pseudo data for testing, a sequential sort is used this can be slow
depending on the size of the list and the position of the target. Binary search is used to find a
starting point, which reduces the search time and gives a consistent search time regardless of the
size of the list.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 12

The found items are removed from the list - the idea is that they are moved to a second list and
the relevant records from the data file retrieved for modifications and additions, when they are
completed (you move to a different day or key) the new and modified items are added to the
original list, this list is in effect an index.

If you are testing this try the sequential search first, use the save button, then the load button to
restore the list and see the difference using the binary search. This is just for the testing stage if
this were used in a real situation the list would remain in memory to save a lot of time.
Essentialy when adding a record to the data file you would also add the key (in this case the date)
and the record number to the list. (index). When searching for a given key this routine would
find all matches and their relevant record numbers.

This description is a bit convoluted (could use more time to re-write), but the code is commented
and should be self-explanatory.

I also have a routine for allowing deletions and additions to the data file using a linked list of
available record numbers, unfortunately the comments are mainly in my head, I will work on it
and submit next month.

’ searching a list box for a sequence of identical values

autodefine "off"
declare BSearch(lBound as int,uBound as int,winuse as window,id as int,Target
as string)
declare SSearch(lBound as int,uBound as int,winuse as window,id as int,Target
as string)
declare "kernel32", GetTickCount(),int

def maxsize as int
’ vary this number for testing
maxsize = 1000
def numelements as int
def start,fini as int
def run as int
def retval as int

’ file definitions
def idxfile:BFILE
def fileLoc:string
def temp as string
fileloc = getstartpath
def fName:string
fName = "test.txt"

’ the index file would be smaller if used integers, but the conversion for
loading into the list box
’ creates a noticeable slowing down, the eternal tradeoff between space and
time

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 13

type testit
 def a[8] as istring
 def b[6] as istring
endtype
def t as testit
def searchitem[8] as istring

’ setid for controls
setid "indexlist",100
setid "keylist",101
setid "recnolist",102
setid "SSearchBtn",110
setid "BSearchBtn",111
setid "SaveBtn",112
setid "LoadBtn",113
def MainWin:window
window Mainwin,0,0,300,250,0x80C80080,0,"Caption",main
control mainwin,"L,ListBox1,6,1,130,119,0x50A00142,@indexlist"
control mainwin,"L,ListBox1,6,127,130,95,0x50A00142,@keylist"
control mainwin,"L,ListBox1,140,127,125,95,0x50A00142,@recnolist"
control mainwin,"B,Sequential,222,0,70,20,0x50000000,@SSearchBtn"
control mainwin,"B,Binary,222,20,70,20,0x50000000,@BSearchBtn"
control mainwin,"B,save,222,40,70,20,0x50000000,@SaveBtn"
control mainwin,"B,load,222,60,70,20,0x50000000,@LoadBtn"

newlist

run = 1
do
wait
until run = 0
closewindow MainWin
end

sub main
’work code goes here.
select @CLASS
 case @IDCONTROL
 select @controlid
’ case 1
’ if @notifycode = @lbndblclk
’ endif
 case @SSearchBtn
 ’ sequential search
 ’ this demonstrates the speed improvement by starting the
search close to the
 ’ search value by using a binary search to find the start
index (case @BSearchBtn)
 def retval as int
 start = GetTickCount()
 numelements = getstringcount (mainwin,@indexlist)
 if numelements > 0
 Ssearch(0,numelements-1,mainwin,@indexlist,searchitem)
 fini = GetTickCount()
 messagebox mainwin,"finished in"+str$(fini-start),""
 endif

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 14

 case @BSearchBtn
 ’ Binary search
 ’ Find all matching strings in a sorted list box (easily converted
for an array or sorted disk file).
 ’ If less than ten items use a simple sequential search
 ’ more than ten use a binary search to find the starting point to
speed up the search.
 ’ Binary search exits with the first string position that it
finds, to allow for multiple matches
 ’ step back until the returned value is less than the search
string and then
 ’ use this value as the starting point in the search.
 numelements = getstringcount (mainwin,@indexlist)
 start = GetTickCount()
 if numelements > 0
 if numelements > 10
 ’ use a binary search to find an instance of the
search string
 retval = bsearch(0,numelements-
1,mainwin,@indexlist,searchitem)
 ’ if not found BSearch returns -1 (can’t use zero as
the list is zero based)
 if retval >= 0
 ’ step back through the list until search string
and list string no longer match
 while left$(searchitem,8) =
left$(getstring(mainwin, @indexlist,retval),8)
 retval = retval - 1
 endwhile
 ’ use new retval as starting point for
sequential search.
 ’ the search routine also moves values to
CurrApps list box.
 Ssearch(retval,numelements-
1,mainwin,@indexlist,searchitem)
 endif
 else
 ’ less than ten then simple sequential search
 Ssearch(0,numelements-
1,mainwin,@indexlist,searchitem)
 endif
 fini = GetTickCount()
 messagebox mainwin,"finished in"+str$(fini-start),""
 endif
 case @SaveBtn
 ’ save
 ’ CurrApps are the appointments currently being modified
 ’ Add them back to index listbox
 def CurrApps as int
 def newstr as string
 ’ copy the listbox back to the index listbox
 CurrApps = getstringcount(mainwin,@keylist)
 if CurrApps > 0
 for i = 0 to CurrApps -1
 t.a = getstring(mainwin,@keylist,i)
 t.b = getstring(mainwin,@recnolist,i)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 15

 newstr = append$(t.a," ", t.b)
 addstring mainwin,@indexlist,newstr
 next i
 for i = 0 to CurrApps
 deletestring mainwin,@keylist,0
 deletestring mainwin,@recnolist,0
 next i
 endif
 putall
 case @LoadBtn
 ’ loadfrom file to index listbox
 getall
 endselect
’ put these two at the end of the case structure, after all they will only be
called once each.
 case @idcreate
 centerwindow mainwin
 case @idclosewindow
 run = 0
endselect
return

’subs and functions after here
sub SSearch(lBound,uBound,winuse,id,Target)
’ simple sequential search of a sorted listbox to find matching strings
’ and process them as needed
 def i,alldone as int
 i = lbound
 alldone = 0
 ’ set value for target, only do calculation once
 def tt[8] as istring
 tt =left$(Target,8)
 def ss[8] as istring
 do
 ’ only calculate value for compare once for each iteratation. ss is the
string to search for.
 ss = left$(getstring(winuse, id,i),8)
 if tt= ss
 addstring winuse,@keylist,ss
 addstring
winuse,@recnolist,mid$(getstring(winuse,id,i),@keylist,4)
 ’ strings are transferred to the other listbox ready for
modification or deletion.
 ’ copied back before change day or save.
 deletestring winuse,id,i
 ’ step back 1 as next string will have same position due to
deletion
 i = i-1
 endif
 ’ when the searchitem value is less than the value returned from the
string number
 ’ we have gone past all possible matching values and so can save time
and exit the loop
 if tt < ss then alldone = 1
 i = i+1

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 16

 ’ must trap last entry or "endless loop" is possible
 if (i = numelements) then alldone = 1
 until alldone
return

sub BSearch(lBound,uBound,winuse,id,Target)
’ the binary search is very efficient, it requires a sorted list, array or
file.
’ we compare the target to the value at the middle of the array/list/record
number
’ if the target is higher than the midlle value set new boundaries
’ from the midpoint to the upperbound ie the midpoint becomes the new
’ lowerboundary - compare the Target to the value at the middle of the
’ new list (now half the size).
’ if the Target is lower we use the lower half of the new list
’ continue this division until the Target value is found or
’ until the upperboundary the lowerboundary and the midpoint are the
’ same indicating that the Target value is not in the list
’
’ If the Target is first or last there is no point searching
’ This also saves problems with the typing of midPoint as int
’ causing last item in the list being skipped
’ ie. (8+9)/2 = 8.5 and will always return 8

’ set value for target, only do calculation once
def tt[8] as istring
tt =left$(Target,8)
if tt = left$(getstring(winuse, id,lbound),8)
 return lBound
endif
if tt = left$(getstring(winuse, id,uBound),8)
 return uBound
endif

def ss[8] as istring
def foundit, retval,midPoint as int
’ set midpoint
midPoint = (uBound+lBound)/2)
’ set initial values - returns retVal = -1 if Target is not found
’ can’t return zero for false if numeric - as zero based array.
retVal = -1
foundit = 0
while foundit = 0
 ’ only calculate compare value once for the loop, always a good idea.
 ss=left$(getstring(winuse, id,midpoint),8)
 ’search until found or is not in list
 If tt > ss
 ’ Too high so calculate new midpoint
 ’ from old midpoint to upper boundary
 lBound = midPoint
 midPoint = (midPoint+uBound) / 2
 endif
 endif
 if tt < ss
 ’calc new midpoint using lower half of list
 uBound = midPoint

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 17

 midPoint = (midPoint+lBound) / 2
 endif
 if tt = ss
 ’foundit
 foundit = 1
 retval = midPoint
 endif
 If midPoint = lBound
 ’ Doesn’t exist
 foundit = 1
 endif
endwhile
return retval

sub putall
setcursor mainwin,@cswait
start = GetTickCount()
’ new file, replaces original with updated listbox strings
IF(openfile(idxfile,fileloc+fName,"w") = 0)
 def count as int
 count = getstringcount (mainwin,@indexlist)
 ’ make sure we have something to put
 if count > 0
 for i = 1 to count
 temp = getstring(mainwin,@indexlist,i-1)
 t.a = left$(temp,8)
 t.b = mid$(temp,10,4)
 put idxfile,i,t
 next i
 ’ delete from end of list upwards, save a bit for re-sorting the list
 ’ this should be replaced with Fletchie et.al’s API call to clear the
list box.
 ’ and probably accounts for the difference between saving and loading
data.
 for i = 0 to count
 deletestring mainwin,@indexlist,count - i
 next i
 endif
 closefile idxfile
else
 mesagebox winmain,"Unable open file for saving index",""
endif
fini = GetTickCount()
messagebox mainwin,"saved "+str$(count)+" records in "+str$(fini-start)+"
milliseconds",""

setcursor mainwin,@csarrow
return

sub getall
def numrecs as int
setcursor mainwin,@cswait
start = GetTickCount()
’ open file for reading
IF(openfile(idxfile,fileloc+fName,"r") = 0)
 ’ using a for loop is quicker than testing for EOF

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 18

 numrecs =len(idxfile)/len(t)
 if numrecs > 0
 for i = 1 to numrecs
 get idxfile,i,t
 addstring mainwin,@indexlist,t.a+" "+t.b
 next i
 endif
 closefile idxfile
else
 messagebox mainwin,"unable to open index file",""
endif
fini = GetTickCount()
messagebox mainwin,"retrieved "+str$(numrecs)+" records in "+str$(fini-
start)+" milliseconds",""
setcursor mainwin,@csarrow
return

sub newlist
’ build a number of pseudo dates for testing (t.a)
’ please ignore the strange number of months/days in a year/month
’ and the fact that the so called record numbers (t.b) are extremely
artificial
def newstr[14] as istring
t.a = "20020101"
t.b = "1"
newstr = " "
if maxsize > 0
for i = 0 to maxsize
 t.a = left$(ltrim$(str$(val(t.a)+ int(rnd(10)))),8)
 t.b = left$(ltrim$(str$(val(t.b)+ int(rnd(2)))),4)
 newstr = append$(t.a," ", t.b)
 addstring mainwin,@indexlist,newstr
 ’ make sure we at least 2 pseudo dates for the search
 if i = int((maxsize/1.5))
 addstring mainwin,@indexlist,newstr
 searchitem = t.a
 endif
next i
endif
messagebox mainwin,"looking for "+searchitem,""
return

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 19

INC & DEC Routines

BY

Fidcal

If your program does a lot of... megaIndexCounter_LEFT = megaIndexCounter_LEFT + 1
and someThingImportant = someThingImportant - 1 then you might like to consider including
one or both of the functions listed below. Then you can replace the above with...

inc megaIndexCounter_LEFT
and
dec someThingImportant

Ah! Reminds me of my Z80 assembler days!

declare inc(varPTR:pointer)
declare dec(varPTR:pointer)
openconsole
color 0,15
cls
n=99
print n
inc n
print n
dec n
dec n
print n
do:until inkey$<>""

closeconsole
end

sub inc(varPTR:pointer)
 #varPTR=#varPTR+1
return

sub dec(varPTR:pointer)
 #varPTR=#varPTR-1
return

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 20

Editors Note: AlGonzalez followed up Fidcal’s orinignal routines with this modified version.

Declare Inc(varPTR As Pointer, incValue As Int)
Declare Dec(varPTR As Pointer, decValue As Int)

Dim n As Int

OpenConsole
Color 0,15
Cls

n = 99
Print n
Inc n
Print n
Dec n
Dec n
Print n

Print "-----"
Inc n, 2
Print n
Dec n, 50
Print n

Do:Until Inkey$ <> ""

CloseConsole
End

Sub Inc(varPTR As Pointer, incValue As Int)
 If incValue < 1: incValue = 1: EndIf
 #varPTR = #varPTR + incValue
Return

Sub Dec(varPTR As Pointer, decValue As Int)
 If decValue < 1: decValue = 1: EndIf
 #varPTR = #varPTR - decValue
Return

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 21

Inside The Windows API
How To Use The GetVersionExA API Call To Get The Operating System Details.

By

Matt "Lucifer" Cox

 This month Matt Cox gives us a step by step approach to determining what version of
Windows your application may be running under. Knowing what version of Windows your
program is running under can be useful in a number of ways. There may be a time that your
program uses a feature that is only available under say Windows 98SE or higher. Rather than
having your program crash on Windows 95, you could check for the Windows version and have
your program exit gracefully. You could also use the version routine as part of a larger program
to generate diagnostic or system information for the end-user to submit with possible bug
reports. All in all, a very useful routine to add to your API toolbox.

STEP 1 - You need to add the following TYPE to the top of your code within the same location
as all the rest of your declarations.

TYPE OSVERSIONINFO
 DEF InfoSize:INT
 DEF MajVer:INT
 DEF MinVer:INT
 DEF Build:INT
 DEF Platform:INT
 DEF PSS[128]:CHAR
ENDTYPE

STEP 2 - You need to add a global variable to the top of your code within the same location as
all the rest of your declarations. This will allow you to access the OS data from any point within
your application.

DEF vertext$[5]:STRING

STEP 3 - You need to declare the GetVersionExA API call to the top of your code within the
same location as all the rest of your declarations.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 22

DECLARE "Kernel32", GetVersionExA(VersionInformation:OSVERSIONINFO),INT

STEP 4 - At the end of your code you need to add the following subroutine. This subroutine is
what does the work and produces the OS details.

SUB OSVersion
 DEF ver$, ver2$:string
 DEF VersionInformation:OSVERSIONINFO
 VersionInformation.InfoSize=LEN(VersionInformation)

 IF GetVersionExA(VersionInformation) = 0
 vertext$ = "Error"
 ELSE
 ver$ =
str$(VersionInformation.MajVer)+","+str$(VersionInformation.MinVer)+","+str$(
VersionInformation.Platform)
 SELECT ver$
 CASE " 4, 0, 1"
 ver2$ = "Win 95/OSR2"
 CASE " 4, 10, 1"
 ver2$ = "Win 98/SE"
 CASE " 4, 90, 1"
 ver2$ = "Win ME"
 CASE " 4, 0, 2"
 ver2$ = "Win NT4"
 CASE " 5, 0, 2"
 ver2$ = "Win 2000"
 CASE " 5, 1, 2"
 ver2$ = "Win XP"
 DEFAULT
 ver2$ = "Undifined"
 ENDSELECT
 vertext$[0] = ltrim$(STR$(VersionInformation.MajVer))
 vertext$[1] = ltrim$(STR$(VersionInformation.MinVer))
 vertext$[2] = ltrim$(STR$(VersionInformation.Build))
 vertext$[3] = ltrim$(STR$(VersionInformation.Platform))
 vertext$[4] = ver2$
 ENDIF
return vertext$

Let’s put a small demo together to get it working.

Example –

TYPE OSVERSIONINFO
 DEF InfoSize:INT

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 23

 DEF MajVer:INT
 DEF MinVer:INT
 DEF Build:INT
 DEF Platform:INT
 DEF PSS[128]:CHAR
ENDTYPE

DEF vertext$[5]:STRING
DEF a$:STRING

DECLARE "Kernel32",GetVersionExA(VersionInformation:OSVERSIONINFO),INT

OPENCONSOLE
OSVersion
PRINT "OPERATING SYSTEM DETAILS"
PRINT "========================"
PRINT
PRINT "Major Version : "+vertext$[0]
PRINT "Minor Version : "+vertext$[1]
PRINT "Platform : "+vertext$[3]
PRINT "Build : "+vertext$[2]
PRINT "Operating System : "+vertext$[4]
PRINT
INPUT "Press ENTER exit",a$
CLOSECONSOLE

END

SUB OSVersion
 DEF ver$, ver2$:string
 DEF VersionInformation:OSVERSIONINFO
 VersionInformation.InfoSize=LEN(VersionInformation)

 IF GetVersionExA(VersionInformation) = 0
 vertext$ = "Error"
 ELSE
 ver$ =
str$(VersionInformation.MajVer)+","+str$(VersionInformation.MinVer)+","+str$(
VersionInformation.Platform)
 SELECT ver$
 CASE " 4, 0, 1"
 ver2$ = "Win 95/OSR2"
 CASE " 4, 10, 1"
 ver2$ = "Win 98/SE"
 CASE " 4, 90, 1"
 ver2$ = "Win ME"
 CASE " 4, 0, 2"
 ver2$ = "Win NT4"
 CASE " 5, 0, 2"

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 24

 ver2$ = "Win 2000"
 CASE " 5, 1, 2"
 ver2$ = "Win XP"
 DEFAULT
 ver2$ = "Undifined"
 ENDSELECT
 vertext$[0] = ltrim$(STR$(VersionInformation.MajVer))
 vertext$[1] = ltrim$(STR$(VersionInformation.MinVer))
 vertext$[2] = ltrim$(STR$(VersionInformation.Build))
 vertext$[3] = ltrim$(STR$(VersionInformation.Platform))
 vertext$[4] = ver2$
 ENDIF
return vertext$

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 25

My Adventures With IBasic
(Or how to frustrate yourself for fun!!)

By

RICK LETT

(Newbie)

The Mystery of Select Case

Well hello again all you (...Including me!)Newbie programmers! Well it looks like we get
another month together, and hopefully many more (at least until I’m found out anyway!).

Last month we talked about our first program and did something a little different than a "Hello
World "program. Fun wasn’t it!!

Well this month we’re going to expand on that and introduce a few more concepts. (Sorry folks,
gotta move this along because I’ll never be a programmer of IBasic by lollygagging around you
know.)
Now since you can find your way around in Windows go ahead and cut and paste the program
below into the IBasic editor can’ t miss it, it's that big white screen in front of ya.

Go ahead I'll wait.

Rem**

DECLARE "kernel32",Sleep(dwMilliseconds:INT),INT
Def random, time:int
openconsole
print"Demo of select/case to randomly"
print"print 3 colors to console screen using "
print"random numbers and random timer intervals"
locate 18,5:print"Notice that case represents each case selected"
locate 20,5:print"Timer shows the randomly selected timer amount"
locate 22,5:print"(in milliseconds)"
locate 24,5:color 9,0:print"<press any key to close>"
do
random = rnd(3) + 1
time = rnd(500) + 300

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 26

select random

 case 1

 locate 10,10
 color 0,12
 print " ","case ",random,"timer ",time
 sleep(time)
 locate 10,10
 color 0,0
 print" "

 case 2

 locate 12,10
 color 0,14
 print " ","case ",random,"timer ",time
 sleep(time)
 locate 12,10
 color 0,0
 print" "

 case 3

 locate 14,10
 color 0,2
 print " ","case ",random,"timer ",time
 sleep(time)
 locate 14,10
 color 0,0
 print " "

endselect

until inkey$<>""
closeconsole
end

Rem***

Well here we are on the other side, go ahead hit run and look at her goooo!!
Pretty neat huh? Took me all afternoon to come up with that one. Now we got to figure out how
it works.

Just hit any key and read on.

Ok first off remember when I alluded to a better way to time out your program last month? Well
it’s time to talk about that a bit.

Notice the first line.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 27

DECLARE"kernel32",Sleep(dwMilliseconds:INT),INT

Now unless you’ve been reading a lot since last month this is a DECLARE statement from the
windows API or Applications Programmer Interface, some of you knew that, some of you
didn’t.

By the way, you would do well to down load the ApiViewer 2002, an excellent tool with an
IBasic plug in that shows these statements in IBasic syntax, get it, and use it. And by-by the way,
you can read an excellent article from last months issue on the window API.

Now I know your asking (this is you but not whinny)"hey, why do I need this any way, that for-
next thing worked just fine to time out last time" .Ya know I’m glad you asked that.

The thing is if you look at that statement you’ll see in the parenthesis dwMilliseconds, now what
that means is that a millisecond is a millisecond no matter what clock speed your computer is
running at. How fast a for-next loop counts is determined by how fast your computers clock is.
That means this program will run at the same speed no matter what clock speed your computer is
running at. That’s important so that it doesn’t run too slow or too fast but at the rate you intended
it to.

Ok, next we DEFined our variables, very important, as INTegers then opened the console then
PRINTed some purty words to the console screen saying what we’re doing. And it does help to
know that ya know!

If your having trouble remembering about Print, Locate, Color, then shame on you, and you
can review those commands in the users guide.

Next we need to create our random set of numbers. Since in our example we are going to check
the condition of random 3 times we want to randomly generate any number between 1 and 3 so
we say random = rnd (3) + 1 (good thing IBasic isn’t case sensitive). The + 1 is there so there
will be no zero (0) value for random, for this program it wouldn’t hurt because zero would be
ignored, but that could be an important consideration later on (and no I can’t think of an example
right now so trust me ok).

We also need to set a random time value so our program will stop long enough for us to see the
colors on our console screen. Now a millisecond is one thousandth of a second, which is pretty
fast to us. So we need to give it a value that is useful to us, to see what is happening. So:
time = rnd(500) + 300. The + 300 will ensure that our time is always at least 300 milliseconds
long by adding 300 to whatever value that is randomly generated.... And guess what, that is an

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 28

example of why setting that value is an important consideration, because we don’t want that
value to be zero because that is not useful to our program. Boy I learn something new all the time
ya know that!
By the way in case you haven’t figured it out yet 1 sec. is 1000 milliseconds.

Now with that out of the way we can talk about what this here article is all about, Select / case.
I have thought a long time how best to explain Select / case, so being the semi illiterate guy that
I am (yes, I did graduate, thank you!) I looked those words up in the Dictionary and came up
with this; we are going to select or choose from a group a particular occurrence or case of the
variable random. Hey we’re making decisions again!!
We’re testing or selecting the condition of the variable random to see which state it is in and then
executing the instructions for that condition, and that’s all there is to it.
As each random number comes up the program looks at the value, and if it is say = to 1then it
stops there and moves to the designated location sets the Color, Prints the message
then Sleeps (n) for the amount of time provided by the variable time. Using Sleep is as simple as
providing a number between the parentheses, then the instructions stop for that amount of time
then returns control to the program. Easy huh?

Now of course all things got to end so after setting up our select / case we need to endselect so
our program will know when to go back and look at the next condition of random.
We do that until inkey$ is not equal to nothing (a key press) and that ends our program.
As it runs you’ll be able to see each time it selects each case and executes that part and the time
that it pauses before resuming.

That’ s all there is to it folks! And I hope it helps you out understanding how to use select / case
in your programs. And remember if you’ re programming and not having fun then your not using
IBasic.

See ya next month!!!!

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 29

JavaScript Jukebox

By

Paul “pel” Love

 I was working on a project recently and it occurred to me that I could use a freeware javascript
routine I had lying around to let the user do some loan payment calculations (using IBasic’s
embedded browser window) without having to write any code myself. That, in turn, got me
thinking about how many free javascripts are available on the net and how easily they can be
integrated into IBasic programs. The program "Javascript Jukebox" is a quick example of
making use of javascript routines; it also includes an ’editor’ screen to let you modify the
javascript code or copy pieces of it to use in a new script.

 Basically, in order to run each javascript in the browser control, you can start with a web page
"skeleton" and place the appropriate parts of the script in the head or body sections (most scripts
indicate clearly what goes where). For example, start with the basic HTML page:

 <html>
 <head>
 <title>Basic Web Page</title>
 </head>
 <body>
 </body>
 </html>

 Then insert the "head" portion of the script between the <head> and </head> tags and the
"body" portion between the <body> and </body> tags.

 Of course you can also make use of VBScript, DHTML routines and Java applets -- for
example, there’s a freeware applet named "ADraw" available from http://www.javaside.com/
that’s a neat "Paint" type program and can be easily called from a web page with about four lines
of HMTL code.

Getting back to Javascript Jukebox though, here’s a picture of the main screen:

http://www.javaside.com/

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 30

 Clicking on any of the buttons starts that particular script running in a browser window:

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 31

 And clicking on the ’Editor’ button over the browser window copies the web page code into an
edit screen:

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 32

 And finally, here’s the IBasic program listing:

REM Javascript Jukebox

’Trap keyboard and mouse events
SETID "ENMKEYEVENTS",0x10000
SETID "ENMOUSEEVENTS",0x20000
SETID "ENMSGFILTER",0x700
TYPE MSGFILTER
 def hwndFrom:INT
 def idFrom:INT
 def code:INT
 def msg:INT
 def wparam:INT
 def lparam:INT
ENDTYPE
DEF mf:MSGFILTER
DEF mem:MEMORY

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 33

DEF win,wb,wb1:WINDOW
DEF dlg,dlg2:DIALOG
DEF run,x,y,w,h,IEflag,answer,answer2,bitmap1,pos,rtflag:INT
DEF htmlfile$,null$,text$:STRING
DEF savetext$[64000],savetext2$[64000]:ISTRING
DEF htmlfile:FILE

window win,0,0,600,435,@CAPTION|@SYSMENU|@MINBOX,0,"Javascript
Jukebox",winhandler
setwindowcolor win,RGB(0,180,255)
menu win,"T,&File,0,0","I,&Quit,0,3"
insertmenu win,1,"T,&Additional Selections,0,0","I,Graph maker,0,21"
insertmenu win,2,"T,&Help,0,0","I,Contents,0,91"
CONTROL win,"B,,60,70,200,50,@CTLBTNBITMAP,100"
CONTROL win,"B,,60,130,200,50,@CTLBTNBITMAP,120"
CONTROL win,"B,,60,190,200,50,@CTLBTNBITMAP,140"
CONTROL win,"B,,60,250,200,50,@CTLBTNBITMAP,160"
CONTROL win,"B,,60,310,200,50,@CTLBTNBITMAP,180"
CONTROL win,"B,,340,70,200,50,@CTLBTNBITMAP,200"
CONTROL win,"B,,340,130,200,50,@CTLBTNBITMAP,220"
CONTROL win,"B,,340,190,200,50,@CTLBTNBITMAP,240"
CONTROL win,"B,,340,250,200,50,@CTLBTNBITMAP,260"
CONTROL win,"B,,340,310,200,50,@CTLBTNBITMAP,280"
SETCONTROLTEXT win,100,GETSTARTPATH+"blackjck.bmp"
SETCONTROLTEXT win,120,GETSTARTPATH+"psytest.bmp"
SETCONTROLTEXT win,140,GETSTARTPATH+"clock.bmp"
SETCONTROLTEXT win,160,GETSTARTPATH+"puzzle.bmp"
SETCONTROLTEXT win,180,GETSTARTPATH+"mreader.bmp"
SETCONTROLTEXT win,200,GETSTARTPATH+"calc.bmp"
SETCONTROLTEXT win,220,GETSTARTPATH+"pong.bmp"
SETCONTROLTEXT win,240,GETSTARTPATH+"pgscroll.bmp"
SETCONTROLTEXT win,260,GETSTARTPATH+"htmlmake.bmp"
SETCONTROLTEXT win,280,GETSTARTPATH+"imagepre.bmp"

DIALOG dlg,0,0,640,430,0x80C00080|@SYSMENU|@SIZE,0,"Javascript
Jukebox",dlghandler
CONTROL dlg,"B,&Editor,200,5,60,22,@TABSTOP,10"
CONTROL dlg,"B,&Close,380,5,60,22,@TABSTOP,20"

DIALOG dlg2,0,0,640,430,0x80C00080|@SYSMENU|@SIZE,0,"Javascript Jukebox
Editor",dlg2handler
CONTROL
dlg2,"RE,,10,50,620,350,@TABSTOP|@CTEDITMULTI|@CTEDITRETURN|@VSCROLL|@HSCROLL,
10"
CONTROL dlg2,"T,Click ’Browser View’ to display page in
browser,30,30,250,18,,15"
CONTROL dlg2,"E,,300,5,180,20,@TABSTOP|@CTEDITAUTOH,20"
CONTROL dlg2,"T,File:,270,10,30,20,0x5000010B,30"
CONTROL dlg2,"B,&Browser View,510,5,80,20,@TABSTOP|@CTLBTNDEFAULT,70"
CONTROL dlg2,"B,&Open File,20,5,70,20,@TABSTOP,100"
CONTROL dlg2,"B,&Save File,100,5,70,20,@TABSTOP,110"
CONTROL dlg2,"B,Save File &As,180,5,70,20,@TABSTOP,120"

bitmap1 = LoadImage (GETSTARTPATH+"jukebox.bmp",@IMGBITMAP)
SHOWIMAGE win,bitmap1,@IMGBITMAP,40,5,500,50

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 34

IEflag = 1: ’ assume IE4+ is installed
null$ = ""

run = 1
WAITUNTIL run = 0
deleteimage bitmap1,@IMGBITMAP
CLOSEWINDOW win
END

’---
SUB winhandler
SELECT @CLASS
 CASE @IDCREATE
 centerwindow win

 CASE @IDCLOSEWINDOW
 run = 0

 CASE @IDMENUPICK
 select @MENUNUM
 case 3
 run = 0
 case 21: ’ graphit
 htmlfile$ = GETSTARTPATH + "graphit1.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 91: ’ help file
 htmlfile$ = GETSTARTPATH + "jboxhelp.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE
 endselect

 CASE @IDCONTROL
 select @CONTROLID
 case 100: ’ blackjack game
 htmlfile$ = GETSTARTPATH + "blackjck.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 120: ’ psychic test
 htmlfile$ = GETSTARTPATH + "psytest.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 140: ’ clock
 htmlfile$ = GETSTARTPATH + "clock.htm"

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 35

 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 160: ’ sliding puzzle
 htmlfile$ = GETSTARTPATH + "puzzle.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 180: ’ mind reader
 htmlfile$ = GETSTARTPATH + "mreader.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 200: ’ calculator
 htmlfile$ = GETSTARTPATH + "calc.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 220: ’ pong
 htmlfile$ = GETSTARTPATH + "pong.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 240: ’ page scroller
 htmlfile$ = GETSTARTPATH + "pgscroll.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 260: ’ HTML page creator
 htmlfile$ = GETSTARTPATH + "htmlmake.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 case 280: ’
 htmlfile$ = GETSTARTPATH + "imagepre.htm"
 showwindow win,@SWHIDE
 answer = domodal dlg
 if wb > 0 then closewindow wb
 showwindow win,@SWRESTORE

 endselect

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 36

ENDSELECT
RETURN

sub dlghandler
SELECT @CLASS
 CASE @IDCLOSEWINDOW
 closedialog dlg,@IDOK

 CASE @IDCONTROL
 select @CONTROLID
 case 10: ’ editor
 answer2 = domodal dlg2
 case 20: ’ close
 closedialog dlg,@IDOK
 endselect

 ’size the embedded browser when the dialog is resized
 CASE @IDSIZE
 GETSIZE(dlg,x,y,w,h)
 IF (wb <> 0)
 x = 20: y = 30: w = w - 30: h = h - 60
 SETSIZE(wb,x,y,w,h)
 ENDIF

 CASE @IDINITDIALOG
 setcontrolcolor dlg,10,RGB(0,0,0),RGB(255,255,208)
 setcontrolcolor dlg,20,RGB(0,0,0),RGB(255,255,208)
 if IEflag = 0
 messagebox dlg,"ABORT - Internet Explorer 4.0+ not
installed","Javascript Jukebox"
 else
 ’err = SetCurrentDirectoryA(GETSTARTPATH)
 WINDOW
wb,20,30,610,370,@BROWSER|@NOAUTODRAW|@NOCAPTION,dlg,"Jukebox Browser",wbmain
 if(openfile(htmlfile,htmlfile$,"R") = 0)
 BROWSECMD wb,@NAVIGATE,htmlfile$
 closefile htmlfile
 endif
 endif
ENDSELECT
RETURN

wbmain:
’ browser window handler
SELECT @CLASS
 CASE @IDCLOSEWINDOW
 ’run = 0

ENDSELECT
RETURN

wb1main:
’ main browser window handler
SELECT @CLASS
 CASE @IDCLOSEWINDOW

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 37

 ’run = 0

ENDSELECT
RETURN

sub dlg2handler
SELECT @CLASS
 CASE @IDCLOSEWINDOW
 closedialog dlg2,@IDOK

 case @IDMENUPICK
 select @MENUNUM
 case 1: ’Close
 closedialog dlg2,@IDOK
 case 2: ’New file
 ret = CONTROLCMD (dlg2,10,@RTLOAD,null$,0)
 case 3: ’Print
 CONTROLCMD dlg2,10,@RTPRINT
 case 21:’Select All
 setfocus dlg2,70
 setfocus dlg2,10
 CONTROLCMD dlg2,10,@RTSETSELECTION,0,-1
 case 22:’Copy
 CONTROLCMD dlg2,10,@RTCOPY
 case 23:’Paste
 CONTROLCMD dlg2,10,@RTPASTE
 case 41: ’ load basic template
 htmlfile$ = GETSTARTPATH+"base.htm"
 gosub doopen
 case 71: ’help file

 endselect

 CASE @IDCONTROL
 select @CONTROLID
 case 10: ’ RE control
 if @NOTIFYCODE = @ENMSGFILTER
 mem = @QUAL
 READMEM mem,1,mf
 select mf.msg
 case @IDRBUTTONUP
 mx = mf.lparam&0xffff
 my = mf.lparam/0x10000
 CONTEXTMENU dlg2,mx+10,my+50,"I,Select
All,0,21","I,Copy,0,22","I,Paste,0,23"
 endselect
 endif

 case 70: ’ go
 closedialog dlg2,@IDOK

 case 100: ’ open file
 htmlfile$ = "": gosub doopen
 case 110: ’ save to file
 gosub dosave
 case 120: ’ save file as

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 38

 htmlfile$ = "": gosub dosave
 endselect

 CASE @IDINITDIALOG
 menu dlg2,"T,&File,0,0","I,New File,0,2","I,Print,0,3","I,Close,0,1"
 insertmenu dlg2,1,"T,&Edit,0,0","I,Select
All,0,21","I,Copy,0,22","I,Paste,0,23","I,Find,0,25"
 insertmenu dlg2,2,"T,Help,0,0","I,Content,0,71"
 SETCONTROLCOLOR dlg2,100,RGB(255,255,255),RGB(0,140,152)
 SETCONTROLCOLOR dlg2,110,RGB(255,255,255),RGB(0,140,152)
 SETCONTROLCOLOR dlg2,120,RGB(255,255,255),RGB(0,140,152)
 setcontrolcolor dlg2,70,RGB(0,0,255),RGB(255,255,255)
 CONTROLCMD dlg2,10,@RTSETLIMITTEXT,512000
 CONTROLCMD dlg2,10,@RTSETEVENTMASK,@ENMKEYEVENTS
 CONTROLCMD dlg2,10,@RTSETEVENTMASK,@ENMMOUSEEVENTS

 if (htmlfile$ <> "") & (len(htmlfile$)>0) then gosub doopen

ENDSELECT
RETURN

SUB doopen
 if htmlfile$ = "" then htmlfile$ = filerequest("Load File",dlg2,1)
 if(openfile(htmlfile,htmlfile$,"R") = 0)
 ret = CONTROLCMD (dlg2,10,@RTLOAD,htmlfile,0)
 setfocus dlg2,10
 CONTROLCMD dlg2,10,@RTHIDESEL,1
 if ret = 0 then rtflag = 1
 closefile htmlfile
 endif
 setcontroltext dlg2,20,htmlfile$
RETURN

SUB dosave
 CONTROLCMD dlg2,10,@RTSETSELECTION,0,-1
 savetext$ = CONTROLCMD(dlg2,10,@RTGETSELTEXT)
 do
 pos = instr(savetext$,chr$(13))
 if pos <> 0
 if mid$(savetext$,pos,1) = chr$(13)
 savetext2$ = mid$(savetext$,1,pos-1)
 savetext2$ = savetext2$ + mid$(savetext$,pos+1)
 savetext$ = savetext2$
 endif
 endif
 until pos = 0
 if (CONTROLCMD (dlg2,10,@RTLOAD,savetext$,0)) = 0
 endif

 if htmlfile$ = "" then htmlfile$ = filerequest("Save File",dlg2,0)
 if(len(htmlfile$) > 0)
 if(openfile(htmlfile,htmlfile$,"W") = 0)
 ret = CONTROLCMD (dlg2,10,@RTSAVE,htmlfile,0)
 closefile htmlfile
 endif
 endif

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 39

RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 40

ibHash: Faking Associative Arrays With IStrings

By

Jerry Muelver, HyText Consulting

An array of strings is a powerful tool, the "Programmer’s Friend" for sure. You can store,
retrieve, add, delete, modify, sort, slice, and dice data every which way once you’ve got it
into an array.

Numerical Index: Array

To get a hold of your data, all you have to know is the numerical index for the array
element holding the data:

def fruit[5]:string
fruit = "apple","banana","cherry","mango","orange"

Now we know that the array looks like this:

fruit[0] = "apple"
fruit[1] = "banana"
fruit[2] = "cherry"
fruit[3] = "mango"
fruit[4] = "orange"

So if someone asks, "Do you like fruit[2] pie?", we can answer, "Yes, fruit[2] pie is good,
but I really like fruit[0] pie!" and everyone will know what we’re talking about... as long
as everyone knows what numerical index stands for which fruit... and no one added any
that we don’t know about... and the array was originally defined big enough to hold the
total number of kinds of fruit we ever want to list... and no one inserts a new fruit near
the beginning of the list and changes all the index numbers we used to know and love....

So, there are some organizational and structural problems with numerically-indexed
arrays. We typically overcome those problems by extensive index bookkeeping to keep
track of what’s where in the array, so we know how to find data when we need it.

Suppose I have an array of my "favorites", like this:

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 41

favorites = "burgandy","apple","chocolate almond","banana","linguini"

Well, that’s nice and tidy. Now quick -- what’s my favorite pasta? That’s not so hard to
figure out. How about my favorite fruit? Pie? Color? Would "chocolate almond" be my
favorite candy bar... or ice cream? The numerical index for this array is not going to be
much help answering those questions, because you have to know not only what item is at
each index, but also what kind of item it is.

String Index: Hash

Let me introduce you to the associative array, also called a "hash". Here’s another way of
looking at my favorites:

favorite["color"] = "burgandy"
favorite["pie"] = "apple"
favorite["ice cream"] = "chocolate almond"
favorite["fruit"] = "banana"
favorite["pasta"] = "linguini"

Suddenly, everything’s clear! Instead of numbers for the index, I used strings. For each
string I associated a value -- another string. Now, quick -- what’s my favorite fruit? Pie?
Color?

Elements in an associative array have two components -- the string index ("key"), and the
associated content ("value").

An associative array is also called a "hash" because the key (in languages like Perl, Java,
Python, awk, JavaScript, Ruby, Smalltalk, etc.) is processed into a memory address and
stored in an internal database that does all the bookkeeping for you. Ask for
favorite["pie"] and "pie" gets hashed into an address, and the program coughs up the
contents of that address through direct access -- no searching or reading or comparing or
other fiddling around.

With very little effort, you can come up with scads of applications for hashes -- username
and password, name and phone number, style and color, paragraph and font, room and
contents, disease and symptoms, action and life-credits -- the list is endless. There’s only
one small problem -- IBasic does not support hashes.

Arrays as Workaround Hashes

There are several options for doing hash-like work in IBasic. One way is to create an
array of User-Defined Types (UDT):

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 42

Type hash
 key: string
 value: string
Endtype

def favorite[5]: hash
favorite[0].key = "color"
favorite[0].value = "burgundy"
favorite[1].key = "pie"
...

That’s a little better. It still has a numerical index to juggle around, but at least we can
search for a particular key and get that key’s value, and we could have numbers in their
native form instead of strings for the value part of the UDT if needed.

You could also skip the UDT and go directly to an array structure like this:

def favorite[10]:string
favorite = "color","burgundy","pie","apple","ice cream","chocolate
almond"
favorite[3] = "fruit","bananna","pasta","linguini"

Then, to find the value for a particular key, search the odd-number indexes:

for i = 0 to 9 step 2
 if (favorite[i] = key) then found = i
next i

or (my preference)

numelements = 10
i = -2:
do
 i = i + 2
until ((i > numelements) | (favorites[i] = key))

To change the value for that key, put the new value into favorite[i+1]. To delete a key,
move each of the following array keys and values up two steps to fill the preceding key
and value with the current key and value.... And don’t forget to subtract two from the
total number of array elements to keep track of the number of keys plus the number of
values!

But we’re still juggling numerical array indexes to get the job done. Isn’t there a better
way?

ibHash to the Rescue!

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 43

Yes! There is a better way -- the elusive, mysterious, hitherto-unknown but soon-to-be-
famous ibHash! An ibHash looks like this:

favorite[2000]:istring
favorite = "{color}burgundy{pie}apple{ice cream}chocolate almond"
favorite = favorite + "{fruit}banana{pasta}linguini"

The rules for building an ibHash are simple:

1. Define an ISTRING big enough to hold all your keys and values.
2. Put each key into curly braces.
3. Put the value for a key right after the key in the ISTRING.

That’s pretty straightforward. But how do we find a key in that ISTRING? Or add a key
and value? Change a value? Delete something? The companion demo file shows the
gritty details of ibHash manipulation with ibHash subroutines (which call some included
string-manipulation subroutines for execution). Let me explain the general ideas here.

• Find a key -- To find a key in an ibHash, put the key into curly braces, then
search the ibHash with INSTR(ibHash,key) -- ibHashGet(ibHash,key), uses
extractstr(str,openmarker,closemarker)

• Add a key and value -- To add something to an ibHash, put the key in curly
braces, add the value to the end, and add the combination to the ibHash --
ibHashPut(ibHash,key,value), uses extractstr(str,openmarker,closemarker) and
replstr(str,target,source)

• Delete a key and value -- to delete a key-value pair from the ibHash, find the
key, copy everything from the key to the next opening curly brace or end of file to
get the key’s value, and replace the key + value combination in the ibHash with a
null -- ibHashDel(ibHash,key), uses extractstr(str,openmarker,closemarker) and
replstr(str,target,source)

• Change the value for a key -- To change a key’s value, find the key, copy the
value, and replace the old key + value combination in the ibHash with the new
key + value combination -- ibHashPut(ibHash,key,value), if the key is already in
the ibHash also uses extractstr(str,openmarker,closemarker) and
replstr(str,target,source) to update the existing key.

• List key-value pairs -- To list all the key-value pairs in an ibHash, chop each
key-value off a copy of the ibHash with splitstr(str,marker) with marker="{", then
chop the pair apart at the closing curly brace "}".

The companion demo program for this article shows how to put an ibHash together
entirely from user input. You could add file-saving and -reading functions to build a

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 44

database application quite easily. For extreme flexibility, you tie your ibHash together
with Fletchie’s DynaStrings instead of istrings and hash away to the limits of the
computer’s memory.

When to use ibHashes

Because it is string-based, an ibHash offers flexibility that arrays and UDTs can’t match.
You can change the number of fields in a record as easily as changing the number of
records in a file. Since the index keys are strings, you can make them up on the fly, even
from user input. Free form in structure, there are no restrictions on number or types of
fields in records. to handle numbers, all you need to do is drop the string value into a
val(str) function, and you’re off to the calculation races.

I use ibHashes for color combinations, formatting styles, user input storage and updating,
and free-form text base applications. New uses crop up with every new project. Try
ibHashes the next time you need to keep track of odd-ball collections of objects, or input
from forms, or free-form record sets for adventure game characters or quiz scores. You’ll
love ’em!

"When you’ve got a good hammer, everything looks like a nail."

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 45

LINKED LISTS Made Easy
CREATING A SINGLE LINKED LIST - PART II

By

 Bizzy

In Part I - The Foundations, we examined the many different types of variables, such
as, Integer, Float, Double, String, UDT (User Defined Type), and Arrays, and how
they work in RAM. We also saw how Arrays were built and UDT’s made into Arrays.
Pointers were explained in simple terms to enable us to understand how they work in
general. And finally a Single Linked List and its Rules were examined.

In this article - Creating a Single
Linked List - Part II - we will
now design and build the
software to do just that - build a
Single Linked List.

The complete software code is
listed at the end of this article.

.

THE FOUR STEPS TO BUILDING THE SINGLE
LINKED LIST

.

STEPS 1, 2 and 3 CONSIST OF THE DEFINITION AND SETUP
CODE WHICH IS DONE ONCE AT THE START OF THE

PROGRAM

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 46

STEP 1
DEFINE THE USER DEFINE TYPE (UDT)

The first thing to do is to define the UDT that we will use to
save our Data into. We gave it a TYPE name of list for this
UDT definition.

FName is where we will save the First Name of a person.
LName will have their Last Name. Age will contain their Age
and AreaCode will contain the Area Code they live in.
UniqueID will be a number which we must supply for each
Item. It must be a different number for each Item we put into
the Linked List. We will use it as an identifier later in the
program.
Nxt:POINTER is where we keep the ADDRESS of the next
Item in the Linked List.

EACH ITEM IN OUR
LINKED LIST WILL
USE THIS list UDT TO
STORE THE DATA

TYPE list
 DEF FName:STRING
 DEF LName:STRING
 DEF Age:INT
 DEF AreaCode:INT
 DEF UniqueID:INT
 DEF Nxt:POINTER
ENDTYPE

STEP 2
DEFINE THE VARIABLES TO USE IN THE
LINKED LIST

The variable start is defined as a TYPE of list. We will use
start to hold the address of the first Item in our Linked List.
This address will be assigned to start.Nxt.

The node variable is defined as a POINTER which we will
use to add our Items into the Linked List.

VARIABLES USED IN
BUILDING OUR
LINKED LIST

DEF start:list
DEF node:POINTER

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 47

STEP 3
ASSIGN start.Nxt A NULL VALUE

When we start out building a Linked List
we need to signify that it is an EMPTY LIST
by assigning start.Nxt a 0 (zero) value.

START WITH AN
EMPTY LIST

start.Nxt = 0

THE FOURTH STEP IS REPEATED EACH TIME YOU ADD A
NEW ITEM TO THE LINKED LIST

PS - There are two ways to put an Item into a Linked List - (1) Append
- which places the new Item at the end of the List; (2) Insert - which
places the new Item at the beginning of the List. The method shown
here is the Append mode, though the code is in the program to do the

Insert Mode.

STEP 4 (Append Mode)

(a) FIND END OF LINKED LIST
The Program is to go through a WHILE loop examining each
#node.Nxt to see if it has an ADDRESS which points to the
next Item or if it has a 0 (zero) which of course indicates it has
reached the last Item in the List.
First set node to point to the start Address - node = start.
Now node and start can access the same address. PART I has
more info on POINTERS if you wish to look it up.

node = start
WHILE (#node.Nxt <> 0)
 node = #node.Nxt
ENDWHILE

(b) ALLOCATE RAM FOR THE
NEW ITEM
The program has exited the WHILE loop because it has found

#node.Nxt = NEW(list, 1)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 48

#node.Nxt = 0 and is in position to add the next Item.
So we need to allocate RAM for the new Item and save the
new Item’s address into #node.Nxt which now equals 0.
NEW allocates RAM for the TYPE list and returns the
Address to #node.Nxt

(c) ASSIGN NODE THE VALUE OF
#NODE.NXT
Now that we have created the new Item and have its address
in #node.Nxt we need to put data into it.
To put data into the new Item we need to assign the Pointer
node the address of the new Item. node = #node.Nxt
The variable Pointer node is now pointing to the new Item
we just allocated RAM for.

node = #node.Nxt

node is now pointing to
address 0FD7 (see Image
Above)

(d) ASSIGN VALUES TO NODE
VARIABLES
All the Variables are now assigned their values. The
program we are using has a SUB which sends the values to the
Linked List. (See Code at bottom of article).
Note the dereferencing # sign is used to put Data into the
node.

#node.FName = "Brian"
#node.LName = "Smith"
#node.Age = 25
#node.AreaCode = 43596
#node.UniqueID = 1

(e) ASSIGN #NODE.NXT = 0
The current node is the last Item in the Linked List so
#node.Nxt is assigned 0. The next Item to be added will read
through the Linked List until it finds this #node.Nxt = 0 (our
First Item) before it adds the next Item to the Linked List.
The diagram, at right, shows the values inserted into the Item
in the Linked List.
The new Item just added is in position one of the Linked List
and the next Item will follow in position two in the Linked
List.

#node.Nxt = 0

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 49

That is the First Item in the Linked List entered.

To enter more Items into the Linked List go to STEP 4 and do (a), (b), (c), (d) and (e) again.

NOTE: There is an easy way to know when to use the dereferencing sign #. It is used
whenever you wish to put Data in or get Data out of an Item. No matter whether it is an
address, a string or an integer. These Data variables were declared in the UDT.

PUTTING IT ALL
TOGETHER

(a)

node = start
WHILE
(#node.Nxt <> 0)
 node =
#node.Nxt
ENDWHILE

(b) #node.Nxt =
NEW(list, 1)

(c) node = #node.Nxt

(d)

#node.FName =
"John"
#node.LName =
"Price"
#node.Age = 27
#node.AreaCode
= 43126
#node.UniqueID =
2

(e) #node.Nxt = 0

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 50

STEP 4 - USING THE INSERT MODE

.

 DEF s:INT

 s = GETSTATE(Main,8)
 IF s = 1
 node = NEW(list,1)
 #node.FName = FN
 #node.LName = LN
 #node.Age = Age
 #node.AreaCode = AC
 #node.UniqueID = ID
 #node.Nxt = start.Nxt
 start.nxt = node
 ELSE
 ...
 ...
 ENDIF

FOUR STEPS TO INSERT AN ITEM AT
BEGINNING OF LINKED LIST

The Insert Mode adds the Item at the beginning of the
Linked List each time a new Item is added.

(a) Create a new Item with the NEW command and
let the Address be stored in the nodePointer.
(b) Now assign the Item all of its Data
(c) Assign the #node.Nxt the value in start.Nxt
(d) Assign the start.Nxt variable the Address in node

To put it simply the new node will always be at the
start of the Linked List and will always take the
Address from start.nxt(where the last Item was
Inserted) into its #node.Nxt. Also start.Nxt receives
the New node Address created from the NEW
command.

PRINTING THE LINKED LIST

 node = start.Nxt
 WHILE node
 ADDSTRING(Main, 5, APPEND$(#node.FName," ",#node.LName,", Age
",STR$(#node.Age),
 ", Area Code ",STR$(#node.AreaCode)))
 node = #node.Nxt
 ENDWHILE

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 51

The Linked List can be printed
by iterating through the List
with a WHILE loop.

1. So that we commence at the
beginning of the list we assign the
address of the First Item in
start.Nxt to the node pointer.
node = start.Nxt

2. A WHILE loop is used to
iterate through the Linked List.
WHILE node

3. ADDSTRING function is used
to collect data from each node
and put the data into a Listbox.

4. After the data is retrieved from
the node we then assign the
address of the next node in the
Linked List to node. This gets
the next Item’s data into the node
pointer. node = #node.Nxt

5. The WHILE loop is ended
with ENDWHILE

THE LINKED LIST PRINTED TO A LISTBOX

DELETING THE LINKED LIST

 1. DEF ref, temp:POINTER - Two Pointers We need to start at the beginning of the

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 52

are defined.

 2. ref = start.Nxt - The ref Pointer is set to the
start of the List.

 3. IF(ref) - Test to see that the List is not
EMPTY.

 4.

WHILE #ref.Nxt - Start WHILE Loop -
which checks for #ref.Nxt containing an
address. If a 0 is found then WHILE loop
has reached the end of the List.

 5.

temp = ref - Assign the address of ref to
temp. We cannot DELETE ref as it contains
the next address, so temp holds the address
to be deleted.

 6. ref = #ref.Nxt - Get the next address into
ref.

 7. DELETE temp - Delete the temp address
from the Linked List.

 8.
ENDWHILE - Exit the WHILE loop when
#ref.Nxt = 0
ENDIF - Exit the IF function

 9.

start.nxt = 0 - List is empty so set start.nxt
= 0
node = start - Set node Pointer to same
address as start. This sets variables up for
empty list.

10.
SENDMESSAGE
Main,@LB_RESETCONTENT,0,0,5
Clears the Listbox.

Linked List and iterate through the list
to delete the Item’s.

SUB DeleteLinkedList
 DEF ref, temp:POINTER

 ref = start.Nxt

 IF(ref)
 WHILE #ref.Nxt
 temp = ref
 ref = #ref.Nxt
 DELETEtemp
 ENDWHILE
 ENDIF

 start.Nxt = 0
 node = start
 SENDMESSAGE
 Main,@LB_RESETCONTENT,0,0,5
RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 53

Single Linked List – Append Mode

IBASIC CODE FOR THE SINGLE LINKED LIST

PROGRAM

SETID "LB_RESETCONTENT", 388

DEF Main:WINDOW
TYPE list
 DEF FName:STRING
 DEF LName:STRING
 DEF Age:INT
 DEF AreaCode:INT
 DEF UniqueID:INT
 DEF Nxt:POINTER
ENDTYPE

DEF start:list
DEF node:POINTER
DECLARE AddList(FN:STRING,LN:STRING,Age:INT,AC:INT,ID:INT)

WINDOW Main,150,150,385,300,@CAPTION|@SYSMENU|@SIZE,0,"Single Linked
List",MainWindow
MENU Main,"T,&File,0,0","I,&Quit,0,1"
CONTROL Main,"B,Create List,84,8,90,20,0x50010000,1"
CONTROL Main,"B,Print List,175,8,90,20,0x50010000,2"
CONTROL Main,"B,Delete List,267,8,90,20,0x50010000,3"
CONTROL Main,"B,,90,1,20,21,0x40080001,40"
CONTROL Main,"L,,11,38,353,200,0x50B00140,5"
CONTROL Main,"C,Insert,13,8,70,20,0x50000003,8"

SETWINDOWCOLOR Main, RGB(255,255,200)

start.Nxt = 0

run = 1
WAITUNTIL run=0
CLOSEWINDOW Main
END

SUB MainWindow

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 54

SELECT @CLASS
 CASE @IDCLOSEWINDOW
 run = 0
 CASE @IDMENUPICK
 SELECT @MENUNUM
 CASE 1
 run = 0
 ENDSELECT
 CASE @IDCONTROL
 SELECT @CONTROLID
 CASE 1
 AddLinkedList
 CASE 2
 PrintLinkedList
 CASE 3
 DeleteLinkedList
 ENDSELECT
 CASE @IDCREATE
 ENABLETABS Main, 1
 CENTERWINDOW Main
ENDSELECT
RETURN

SUB AddLinkedList
 AddList("Gerhard","Berger",41,43569,1)
 AddList("Michael","Schumacher",35,44562,2)
 AddList("Niki","Lauda",58,23487,3)
 AddList("Aerton","Sena",30,24567,4)
 AddList("Joe","Trondoc",36,45867,5)
 AddList("Allan","Jones",48,23876,6)
 AddList("Mika","Hakkinen",42,54672,7)
 AddList("Ralph","Schumacher",37,45672,8)
 AddList("David","Coulthard",35,45612,9)
 AddList("Alessandro","Zinardi",49,23874,10)
 AddList("Alain","Prost",47,23678,11)
 AddList("Nigel","Mansell",46,23846,12)
 AddList("Michael","Andretti",40,45230,13)
 AddList("Eddie","Irvine",43,43298,14)
 AddList("Damon","Hill",45,43278,15)
 AddList("Jaques","Villeneuve",45,43278,15)
 AddList("Nelson","Piquet",41,33278,15)
 AddList("Keke","Rosberg",47,33671,16)
 AddList("Jackie","Stewart",62,38674,17)
 AddList("James","Hunt",57,33678,18)
 AddList("Jack","Brabham",66,33678,19)
RETURN

SUB PrintLinkedList

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 55

 SENDMESSAGE Main,@LB_RESETCONTENT,0,0,5
 node = start.nxt
 WHILE node
 ADDSTRING(Main, 5, APPEND$(#node.FName," ",#node.LName,", Age
",STR$(#node.Age),", Area Code ",STR$(#node.AreaCode)))
 node = #node.nxt
 ENDWHILE
RETURN

SUB AddList(FN,LN,Age,AC,ID)
 DEF s:INT

 s = GETSTATE(Main,8)
 IF s = 1
 node = NEW(list,1)
 #node.FName = FN
 #node.LName = LN
 #node.Age = Age
 #node.AreaCode = AC
 #node.UniqueID = ID
 #node.Nxt = start.nxt
 start.nxt = node
 ELSE
 node = start
 WHILE (#node.Nxt <> 0)
 node = #node.Nxt
 ENDWHILE
 #node.Nxt = NEW(list,1)
 node = #node.Nxt
 #node.FName = FN
 #node.LName = LN
 #node.Age = Age
 #node.AreaCode = AC
 #node.UniqueID = ID
 #node.Nxt = 0
 ENDIF
RETURN

SUB DeleteLinkedList
 DEF ref, temp:POINTER

 ref = start.Nxt
 IF(ref)
 WHILE #ref.Nxt
 temp = ref
 ref = #ref.Nxt
 DELETE temp
 ENDWHILE
 ENDIF

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 56

 start.Nxt = 0
 node = start
 SENDMESSAGE Main,@LB_RESETCONTENT,0,0,5
RETURN

SUGGESTED PROJECT

(a) Create a Dialog to handle input of the data. When the Create List Button is
clicked the dialog should open and allow you to type in the UDT data. You will
also need to add a SAVE Button to the Dialog to save the data into the Linked
List.

(b) Change the ListBox to a ListView Control.

That is all for this article covering building a Single Linked List, Printing the List, and
Deleting the List. In the next article we will Delete an Item from the List, Sort the List
and Save to Binary File. The Delete and Sort functions have their own set of Rules
just as the Add to Linked List has its rules.

Happy programming until then - Bizzy

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 57

The IBasic Users Profile Page

Every month here at IBasic Monthly we’d like to profile one of our users so others
can see the quality of people attracted to the IBasic programming language.
These great users are also available on the forum to offer help and suggestions
for beginner and experienced alike

This month we’d like to profile IBasicPower (formerly known as SoulTaker).
The IBasicPower web site may be found at the following link below the icon.

 Joined: 26 Nov 2002

http://www.ibasicpower.com/

IBasicPower was formally schooled in programming using mainframe computers, and has been
programming since the early 1980’s.

Languages used: asm, basic, C, C++ and cobol

Experience: Wrote code samples for the book "Visual Basic Source Code Library. He’s also a
Microsoft Beta Tester and Developer. He currently works for Pitney Bowes DMT (Document
Messaging Technologies)

IBasicPower has recently registered the domain name www.ibasicpower.com and is up and
running and will offer many IB related tips and links and a program or two.

About the web site IBasicPower told IBasic Monthly "I’m doing this Web Site to help other’s and
to help promote the IBasic Programming Language."

Be sure to watch his web site for updates and useful bits from this experienced programmer.

http://www.ibasicpower.com/

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 58

FTP NOW!
Creating a Windows Internet Application with IBasic PART II

By

BIZZY

In the first article we started out by planning the Application and then building an outline
of the FTP Now! program. In this article all the Code will be added to make a fully
functional Internet Application.

The Menu Options, Button Controls and File Lists will all need Code associated with them.
With the Code also we will need more Const, Declare API, UDTs (User Defined Type) and
Def Variables.

The first thing we will put in the program will be the Const, Declares, UDTs and Defs and
then work with the Windows Messaging in our Application to build all the Code needed for
each Control.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 59

Here is the list of all the SETID, CONST in the program. There are a few SETID that
are not used in the program but are there for future development needs. As you read
through the Code you can reference back to this list.

Most of the Constants can be obtained from API Viewer (Link on Pyxia Web Site)

’ Internet Flag Constants
SETID "FTP_TRANSFER_TYPE_UNKNOWN",0x0
SETID "FTP_TRANSFER_TYPE_ASCII",0x1
SETID "FTP_TRANSFER_TYPE_BINARY",0x2
SETID "INTERNET_DEFAULT_FTP_PORT",21
SETID "INTERNET_SERVICE_FTP",1
SETID "INTERNET_FLAG_PASSIVE", 0x8000000
SETID "INTERNET_OPEN_TYPE_PRECONFIG", 0
SETID "INTERNET_OPEN_TYPE_DIRECT", 1
SETID "INTERNET_OPEN_TYPE_PROXY", 3
SETID "INTERNET_OPEN_TYPE_PRECONFIG_WITH_NO_AUTOPROXY", 4
’ List View - Image List
SETID "SM_CXSMICON", 49
SETID "SM_CYSMICON", 50
’ List View
SETID "LVSIL_SMALL", 1
SETID "LVM_FIRST", 0x1000
SETID "LVM_SETIMAGELIST", (@LVM_FIRST + 3)
SETID "LVM_GETITEMA",(@LVM_FIRST + 5)
SETID "LVM_SETITEMA",(@LVM_FIRST + 6)
SETID "LVIS_OVERLAYMASK",0xF00
SETID "LVS_SHAREIMAGELISTS", 0x40
SETID "LVS_SHOWSELALWAYS", 0x8
’ List View and Local Files
SETID "FILE_ATTRIBUTE_DIRECTORY",0x10
’ List View Image
CONST LVIF_IMAGE = 0x2
CONST LVIF_STATE = 0x8
CONST LVIF_TEXT = 0x1

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 60

’ Window Automation
SETID "AW_VER_NEGATIVE",0x8
SETID "AW_HIDE",0x10000
SETID "AW_ACTIVATE",0x20000
SETID "AW_BLEND",0x80000
’ File String Length
CONST MAX_PATH = 260

All the User Defined Type’s used in the program are listed below. You will see them
used throughout the SUBs. They also can be found in the API Viewer (Link on Pyxia
Web Site), except for Internet Params (params), which has been made for our Internet
Parameter File.

’ UDT - List View Item
TYPE LV_ITEM
 DEF mask:UINT
 DEF iItem:INT
 DEF iSubItem:INT
 DEF state:UINT
 DEF stateMask:UINT
 DEF pszText:STRING
 DEF cchTextMax:INT
 DEF iImage:INT
 DEF lParam:INT
ENDTYPE

’ UDT - Select Folder - Local
TYPE BROWSEINFO
 DEF hOwner:INT
 DEF pidlRoot:INT
 DEF pszDisplayName:STRING
 DEF lpszTitle:STRING
 DEF ulFlags:INT
 DEF lpfn:INT
 DEF lParam:INT
 DEF iImage:INT

’ UDT - List View
TYPE NMLISTVIEW
 DEF hwndFrom:INT
 DEF idFrom:INT
 DEF code:INT
 DEF iItem:INT
 DEF iSubItem:INT
 DEF uNewState:INT
 DEF uOldState:INT
 DEF uChanged:INT
 DEF ptActionx:INT
 DEF ptActiony:INT
 DEF lParam:INT
ENDTYPE

’ UDT - Files
TYPE WIN32_FIND_DATA
 DEF dwFileAttributes:INT
 DEF ftCreationTimeLow:INT
 DEF ftCreationTimeHigh:INT
 DEF ftLastAccessTimeLow:INT
 DEF ftLastAccessTimeHigh:INT
 DEF ftLastWriteTimeLow:INT
 DEF ftLastWriteTimeHigh:INT

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 61

ENDTYPE

’ UDT - Internet Params
TYPE params
 DEF profile:STRING
 DEF host:STRING
 DEF userid:STRING
 DEF pword:STRING
ENDTYPE

 DEF nFileSizeHigh:INT
 DEF nFileSizeLow:INT
 DEF dwReserved0:INT
 DEF deReserved1:INT
 DEF cFileName[259]:ISTRING
 DEF cAlternate[13]:ISTRING
ENDTYPE

The following list is all the Windows API functions that we will be using in the FTP
NOW! program. You need the API Viewer (Link on Pyxia Web Site) as it has many of
the APIs in IBasic format. Most of the names of the DLLs say what the function does.

Further Reference can be made by the Win32.Hlp File.

NOTE: All API DECLARE Functions must be on one line in IBasic Code Editor!

’ Wininet is the Windows DLL that we use for the Internet Functions
DECLARE
"wininet",InternetConnectA(session:INT,server:STRING,port:WORD,username:STRING,pass:STRIN
G,
 service:INT,flags:INT,context:INT),INT
DECLARE
"wininet",InternetOpenA(agent:STRING,access:INT,proxyname:STRING,proxybypass:STRING,
 flags:INT),INT
DECLARE "wininet",InternetCloseHandle(handle:INT),INT
DECLARE "wininet",FtpSetCurrentDirectoryA(handle:INT,url:STRING),INT
DECLARE "wininet",FtpGetCurrentDirectoryA(hConnect:INT, lpszCurrentDirectory:STRING,
 lpdwCurrentDirectory:POINTER),INT
DECLARE "wininet",FtpCreateDirectoryA(hConnect:INT, lpszDirectory:STRING),INT
DECLARE "wininet",FtpRemoveDirectoryA(hConnect:INT, lpszDirectory:STRING),INT
DECLARE "wininet",FtpDeleteFileA(hConnect:INT, lpszFileName:STRING),INT
DECLARE "wininet",FtpRenameFileA(hConnect:INT, lpszExisting:STRING, lpszNew:STRING),INT
DECLARE "wininet",FtpGetFileA(hConnect:INT, lpszRemoteFile:STRING, lpszNewFile:STRING,

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 62

fFailIfExists:INT, dwFlagsAndAttributes:INT, dwFlags:INT, dwContext:INT),INT
DECLARE "wininet",FtpPutFileA(hConnect:INT, lpszLocalFile:STRING,
lpszNewRemoteFile:STRING,dwFlags:INT, dwContext:INT),INT
DECLARE "wininet",FtpFindFirstFileA(hConnect:INT, lpszSearchFile:STRING,
lpFindFileData:MEMORY, dwFlags:INT, dwContext:INT),INT
DECLARE "wininet",InternetFindNextFileA(hFind:INT, lpvFindData:MEMORY),INT
’ Used in the Get Folder Locally SUB for changing Folders
DECLARE "shell32.dll",SHGetPathFromIDList(pidl:INT,pszPath:STRING),INT
DECLARE "shell32.dll",SHBrowseForFolder(lpbi:BROWSEINFO),INT
DECLARE "ole32",CoTaskMemFree(pidl:INT)
’ Used for File Attrributes Remote and Local
DECLARE "Kernel32",GetFileAttributesA(lpFileName:STRING),INT
’ Used with Image List and List View
DECLARE "user32",GetDlgItem(hDlg:INT, nIDDlgItem:INT),INT
DECLARE "user32",SendMessageA(wnd:INT,message:INT,wparam:INT,lparam:LV_ITEM),INT
’ Used with the Image List
DECLARE "comctl32",ImageList_AddIcon(himl:INT, hicon:INT),INT
DECLARE "comctl32",ImageList_Create(cx:INT, cy:INT, flags:UINT, cInitial:INT, cGrow:INT),INT
DECLARE "user32",GetSystemMetrics(item:INT),INT
’ Used to Animate the opening and closing of the FTP NOW! Main Window
DECLARE "user32.dll",AnimateWindow(hwnd:INT, dwTime:INT, dwFlags:INT),INT

Variables used in the FTP NOW! Program are listed below. You will find them used
throughout the program Code. These Variables are all Global Variables and can be used
from any part of the Program.

’ Main Window of FTP NOW! dialog
DEF d1:DIALOG
’ Internet Params Dialog
DEF d2:DIALOG
’ Input Dialog to get User Input
DEF InpDia:DIALOG
’ About Dialog for General Info
DEF about:DIALOG
’ Help Dialog to display Help
DEF helper:DIALOG

’ Variables used with the Internet Params
’ Settings
DEF profile,site,userid,pword,ref:STRING

’ Used for Input Dialog to get Folder name
DEF DirName:STRING
’ For User Input Dialog - to set controls
DEF IDLabel,IDName:STRING
’ For Status Bar

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 63

’ Internet Variables used with API
DEF hopen,hconnect,hhttp:INT
DEF infile,outfile:STRING
’ Internet Params File
DEF paramfile:BFILE
’ UDT for Internet Params
DEF settings:params

DEF panes[1]:INT

’ List View UDT Variables
DEF lv:NMLISTVIEW
DEF lvi:LV_ITEM
’ Handles to the List Views for inserting Icons
DEF hwndListViewLoc,hwndListViewRem:INT
’ Main Program Run Variable
DEF run:INT

Well all the Variables and so on have been dealt with. There are three small Dialog
Windows that still need to be created. They are the Input Dialog for User Input, Help
Dialog to Display Help, and an About Dialog to show information about FTP NOW!

We will do the three small Dialog Windows first and then go on and Code the Program.

The Input Dialog (InpDia) which we will use to get
User Input regarding Folders and Files needs to be
done next as it will be used throughout the Code. The
Dialog is created the same way as the Internet Params
Dialog (d2) (See Part I - Animated Gif).

1. Open the Dialog
Editor

2. Type in Variable
Name and Caption.
Turn off all Check
Box items. (Image
at Right)

3. Place a Static Text
Control on the
Dialog and set its
Caption to Name

4. Place an Edit

CREATE INPUT DIALOG IN THE DIALOG EDITOR

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 64

Control on Dialog
and set Tabstop
Check Box.

5. Place a Cancel
Button and an
Accept Button on
the Dialog.

6. Click Generate
Source Icon

7. Paste Dialog Code
(InpDia) into Main
Code Window.

INPUT DIALOG
WINDOWS
MESSAGE SUB

1. Make a SELECT
Statement on
@CLASS

2. Check if it is
@IDCONTROL

3. Make another
SELECT Statement
on @CONTROLID

4. If CASE = 3 (Cancel
Button ID) which
means the User has
clicked the Cancel
Button in the Input
Dialog. Set DirName
to an empty string
and close the Dialog.

’-------------------------------INPUT DIALOG--------------------------------

DIALOG InpDia,0,0,232,58,0x80000080,d1,"",InputDiag
CONTROL InpDia,"T,Name,6,8,140,14,0x5000010B,1"
CONTROL InpDia,"E,,6,26,140,21,0x50810080,2"
CONTROL InpDia,"B,Cancel,155,6,70,20,0x50010000,3"
CONTROL InpDia,"B,Accept,155,32,70,20,0x50010000,4"

’-----------------------INPUT DIALOG MESSAGES-----------------------
SUB InputDiag
 SELECT @CLASS
 CASE @IDCONTROL
 SELECT @CONTROLID
 CASE 3
 DirName = ""
 CLOSEDIALOG InpDia,@IDCANCEL
 CASE 4

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 65

5. If CASE = 4 (Accept
Button ID) which
mean the User has
clicked the Accept
Button. Get the Text
from the Edit
Control (ID 2) and
put it into the
DirName String
Variable. Close the
Dialog Window.

CASE
@IDINITDIALOG
When the Dialog is
created the
INITDIALOG is used to
set up the Dialog before it
is displayed.

 DirName = GETCONTROLTEXT(InpDia, 2)
 CLOSEDIALOG InpDia,@IDOK
 ENDSELECT
 CASE @IDINITDIALOG
 ’ Center Dialog on Screen
 CENTERWINDOW InpDia
 ’ Set Static Text Label (ID 1) Caption to content of IDLabel
 SETCONTROLTEXT(InpDia, 1, IDLabel)
 ’ Set Edit Control Text to the content of IDName
 SETCONTROLTEXT(InpDia, 2, IDName)
 ENDSELECT
RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 66

HELP DIALOG WINDOW

The Help Dialog Window is
created the same way as the
Input Dialog (above) with the
IBasic Dialog Editor. A Rich Edit
is its only Control.

 1. The Windows Message
Handler for the Dialog is
HelpHandler

 2. Two Variables are Defined -
one for a File and one for a
File Name.

 3. Filename is set to the
Program’s path with the
File Help.rtf

 4. A Select Case Statement
receives the Window’s
Messages for this Dialog.

 5. The CASE @IDTIMER
event when active causes the
program to see if the Rich
Edit Control has been
created.

 6. If Rich Edit is created then
the Timer is stopped, and

 7. The File Help.rtf is then
opened . . .

 8. If the File opens then the
contents of the File Help.rtf
are loaded into the Rich
Edit.

’---------------------------------------HELP DIALOG---------------------
DIALOG helper,0,0,464,333,0x80C80080,d1,"FTP NOW!
Help",HelpHandler
CONTROL helper,"RE,,8,7,447,316,0x50A10804,1"

’------------------------------HELP DIALOG MESSAGES------------
SUB HelpHandler
 DEF file1:FILE
 DEF filename:STRING

 filename = GETSTARTPATH + "Help.rtf"
 SELECT @CLASS
 CASE @IDTIMER
 IF CONTROLEXISTS(helper,1)
 STOPTIMER helper
 IF (OPENFILE(file1,filename,"R")=0)
 CONTROLCMD helper,1,@RTLOAD,file1,1
 CLOSEFILE file1
 ENDIF
 ENDIF

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 67

 9. The File is then Closed.

10. If @IDCLOSEWINDOW
- User has clicked the [X] to
close the Dialog.

11. When the helper Dialog
Window is created the
CASE @IDINITDIALOG
is used to set up the Dialog
Window before it is
Displayed.

12. The Rich Edit Margins are
set to 15.

13. The Time is Started for 100
milliseconds.

14. The helper Dialog Window
is centered.

 CASE @IDCLOSEWINDOW
 CLOSEDIALOG helper,@IDOK
 CASE @IDINITDIALOG
 CONTROLCMD helper,1,@RTSETMARGINS,15,0
 STARTTIMER helper, 100
 CENTERWINDOW helper
 ENDSELECT
RETURN

The TIMER is turned on in the IDINITDIALOG so that we can
load theHelp.rtf File after the Dialog is Displayed.

ABOUT DIALOG

The About Dialog is accessed from
the Menu and consists of four
Static Text Controls and one
Button.

Create the About Dialog by opening
the IBasic Dialog Editor and placing
the Controls as shown in the Image
to the right.

1. The Messages from Windows is
processed in the SUB
abouthandler

2. Use a Select Case Statement to

’--------------------------------------ABOUT BOX------------------
DIALOG about,0,0,295,172,0x80C80080,d1,"About FTP
NOW!",abouthandler
CONTROL about,"T,FTP NOW! Version
1.0,90,29,115,22,0x50000100,1"
CONTROL about,"T,Copyright © 2002

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 68

process the Message.

3. CASE @IDCLOSEWINDOW
- indicates the User clicked the
[X] to close the About Dialog.

4. If CASE @IDCONTROL
event is active then check if the
@CONTROLID = 3 and if so
close the About Dialog.

5. CASE @IDINITDIALOG is
used to initialise the Dialog
before it is Displayed and sets
the Dialog to Center Screen.

BizzyPak,80,53,182,19,0x50000100,2"
CONTROL about,"B,OK,112,140,70,20,0x50000001,3"
CONTROL about,"T,Written entirely with the IBasic
programming language from, 10,94,277,19,0x50000100,4"
CONTROL
about,"T,http://www.pyxia.com,91,115,113,18,0x50000100,5"

’-------------------------------ABOUT BOX MESSAGES--------
SUB abouthandler
 SELECT @CLASS
 CASE @IDCLOSEWINDOW
 CLOSEDIALOG about, @IDOK
 CASE @IDCONTROL
 IF @CONTROLID = 3 THEN
CLOSEDIALOG(about,@IDOK)
 CASE @IDINITDIALOG
 CENTERWINDOW about
 ENDSELECT
RETURN

CODE THE PROGRAM

.

INTERNET PARAMETERS

So far the Internet Parameters Dialog (d2,
DiagTwo)
has been completed (in Part I) except for the
two SUBS (ObtainParamFile,
WriteParamFile) that it needs.

So we will complete the two SUBs now.

The ObtainParamFile SUB is
used to read the Disc File
PARAM.DAT and put the
settings in the File into the
Internet Parameters Display

Opens PARAM.DAT File on Disc and Reads File into
Dialog

Window Controls

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 69

Window.

1. Set Cursor to WAIT

2. Openfile PARAM.DAT to
Read Mode

3. Get Data from File into the
UDT settings

4. Close File PARAM.DAT

5. Set Variables profile, site,
userid, and pword from the
settings UDT

6 Set Controls with the text in
the variables.

7. Set Cursor to ARROW

SUB ObtainParamFile
 SETCURSOR (d2, @CSWAIT)
 IF(OPENFILE(paramfile,GETSTARTPATH
+"PARAM.DAT","R") = 0)
 GET paramfile,1,settings
 CLOSEFILE paramfile
 ’ Transfer to DiagTwo edit boxes Variables used by -
 ’ FtpPut/GetFile
 profile = settings.profile
 site = settings.host
 userid = settings.userid
 pword = settings.pword
 SETCONTROLTEXT d2,5,profile
 SETCONTROLTEXT d2,6,site
 SETCONTROLTEXT d2,7,userid
 SETCONTROLTEXT d2,8,pword
 ENDIF
 SETCURSOR (d2, @CSARROW)
RETURN

The WriteParamFile SUB is used
to write to the Disc File
PARAM.DAT saving the settings
from the Internet Parameters
Display Window.

1. Set Cursor to WAIT

2. Get text from Controls into
settings UDT variable.

3. Openfile PARAM.DAT to
Write Mode

4. Put settings UDT data into
file.

5. Close PARAM.DAT File

Opens PARAM.DAT File on Disc, Gets Control text
into settings and Saves the Data

SUB WriteParamFile
 SETCURSOR (d2, @CSWAIT)
 settings.profile = GETCONTROLTEXT(d2,5)
 settings.host = GETCONTROLTEXT(d2,6)
 settings.userid = GETCONTROLTEXT(d2,7)
 settings.pword = GETCONTROLTEXT(d2,8)

 IF (OPENFILE(paramfile,GETSTARTPATH
+"PARAM.DAT","W") = 0)
 PUT paramfile,1,settings
 CLOSEFILE paramfile
 ENDIF

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 70

6. Set Cursor to ARROW

 SETCURSOR (d2, @CSARROW)
RETURN

Main Window (d1) Windows Message Handler Sub is the heart of the program
where most events are processed. The GREEN TEXT in the Panel below are
comments on the Code and what it is used for. Where Controls are mentioned in
the Code you will see the GREEN TEXT IS UNDERLINED. Each Area of the
CODE in the SUB DiagOne has a Header Comment to show what part it relates
to in the program. The Images in the left margin show which Controls activate
each Message.

 ----------------------------------MAIN DIALOG MESSAGES----------------
SUB DiagOne
 DEF stattext:STRING String used with Status Bar
 DEF left,top,width,height:INT Variables for Window Size
 DEF mem:MEMORY Variable for List View UDT

 SELECT @CLASS
 -- MENU OPTIONS ------------------
 CASE@IDMENUPICK
 SELECT@MENUNUM

 CASE 1
 DoSettings SUB Internet Params - PARAM.DAT
 BeginWithFile SUB Read File - Internet Params, "

 CASE 2
 Close Internet Connect - API
 InternetCloseHandle(hconnect)
 InternetCloseHandle(hopen) Close Internet Open - API
 run = 0 Close Main Dialog Window (d1)

 CASE 3
 DOMODAL helper Help Contents - Display Help Dialog

 CASE 4
 DOMODAL about About Box - Display About Dialog
 ENDSELECT

 ------------------------DIALOG CLOSE WINDOW [X] CLICKED------

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 71

 CASE @IDCLOSEWINDOW
 Close Internet Connect - API
 InternetCloseHandle(hconnect)
 InternetCloseHandle(hopen) Close Internet Open - API
 run = 0 Close Main Dialog Window (d1)

--------------------- CONTROLS IN MAIN DIALOG WINDOW (d1)---
 CASE@IDCONTROL
 SELECT@CONTROLID

 CASE 1 SETTINGS BUTTON
 DoSettings SUB Internet Params - PARAM.DAT
 BeginWithFile SUB Read File - Internet Params, "

 CASE 2 CONNECT BUTTON
 ConnectSite SUB Connect via Internet Parameter

 CASE 6 UPLOAD BUTTON
 UploadFiles SUB Upload Files to Web

 CASE 7 DOWNLOAD BUTTON
 DownloadFiles SUB Download Files to Local Folder

 CASE 8 Exit Button
 InternetCloseHandle(hconnect) Close Internet Connect
 InternetCloseHandle(hopen) Close Internet Open
 run = 0 Close Main Dialog Window (d1)

 ------------------------------------ LOCAL GROUP AREA-------------------
 CASE 10 Change Dir Local by Double Click in LV
 IF(@NOTIFYCODE = @NMDBLCLK)
 mem = @QUAL NMLISTVIEW UDT in Memory
 READMEM mem,1,lv " " in lv Variable
 DClkChDirLoc SUB - Change Local Folder
 ENDIF

 CASE 11 MK DIR BUTTON
 MakeDirLocal SUB - Make Dir Local

 CASE 12 CH DIR BUTTON
 SelectFolder SUB - Select Folder to Change Dir Local
 GetLocalFolder SUB - Reads Selected Folder into File List

 CASE 13 DEL DIR BUTTON
 DeleteDirLocal SUB - Delete Dir Local

 CASE 14 REN FILE BUTTON
 RenameFileLocal Rename File in Local Folder

 CASE 15 DEL FILE BUTTON

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 72

 DeleteFileLocal Delete File in Local Folder

 CASE 16 REFRESH BUTTON
 GetLocalFolder Refresh Dir Local

 -------------------------------- REMOTE GROUP AREA--------------------
 CASE 20 Change Dir Remote - Double Click in LV
 IF(@NOTIFYCODE = @NMDBLCLK)
 mem = @QUAL NMLISTVIEW UDT in Memory
 READMEM mem,1,lv " " in lv Variable
 DClkChDirRem SUB - Change Folder on Remote Site
 ENDIF

 CASE 21 MK DIR BUTTON
 MakeDirRem SUB - Make Dir on Remote Site

 CASE 22 CH DIR BUTTON
 ChangeDirRemote SUB - Change Dir on Remote Site

 CASE 23 DEL DIR BUTTON
 DelDirRemote SUB - Del Dir Remote Site

 CASE 24 REN FILE BUTTON
 RenameFileRem SUB - Rename File on Remote Site

 CASE 25 DEL FILE BUTTON
 DeleteFileRem Delete File on Remote Site

 CASE 26 REFRESH BUTTON
 GetRemoteFolder Refresh Remote Dir
 ENDSELECT

Status Bar

----------------------Indicated Size Change of Dialog Window (d1) -------
 CASE@IDSIZE
 ’ Check to see if the Control (Status Bar - ID 40) Exists
 IF CONTROLEXISTS(d1,40)
 ’ Tell the status window we are sizing
 CONTROLCMD d1,40,@SWRESIZE
 ’ Get the client size of the window
 GETCLIENTSIZE d1,left,top,width,height
 panes = -1 Set panes to full width (-1)
 CONTROLCMD d1,40,@SWSETPANES,1,panes
 stattext = "Ready - " + settings.profile
 ’ Put Text into Status Bar
 CONTROLCMD d1,40,@SWSETPANETEXT,0,stattext
 ENDIF

 ---------------------------INITIALIZE MAIN DIALOG WINDOW-------

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 73

Set State

Status Bar

 CASE@IDINITDIALOG
 ’ Put Menu Options into d1
 MENU d1, "T, File, 0, 0", "I, Internet Settings, 0, 1", "I,-,0, 0", "I, Quit, 0
,2"
 INSERTMENU d1,1, "T,Help,0,0", "I,Help Content,0,3", "I,About,0,4"
 CENTERWINDOW d1 Center the Main Dialog Window (d1)
 SETSTATE d1, 5, 1 Set Group Radio Buttons - Auto Mode
 BeginWithFile SUB - Opens File for Parameter Settings
 ’ Set up the List View Controls - Columns, Captions and Widths
 ’ LOCAL List View Control
 CONTROLCMD d1,10,@LVINSERTCOLUMN,0,"Name"
 CONTROLCMD d1,10,@LVINSERTCOLUMN,1,""
 CONTROLCMD d1,10,@LVSETCOLWIDTH,0,118
 CONTROLCMD d1,10,@LVSETCOLWIDTH,1,0
 ’ REMOTE List View Control
 CONTROLCMD d1,20,@LVINSERTCOLUMN,0,"Name"
 CONTROLCMD d1,20,@LVINSERTCOLUMN,1,""
 CONTROLCMD d1,20,@LVSETCOLWIDTH,0,118
 CONTROLCMD d1,20,@LVSETCOLWIDTH,1,0
 ref = "FTPNow" Variable used in Internet Connect
 IDLabel = "Name" Input Dialog Static Text Control
 IDName = "" Input Dialog Edit Control
 ’Get the Windows client size and set up 1 pane for the Status Bar
 GETCLIENTSIZE d1,left,top,width,height
 panes = -1 Set panes to full width (-1)
 CONTROLCMD d1,40,@SWSETPANES,1,panes
 stattext = "Ready - " + settings.profile
 ’ Set the initial pane text
 CONTROLCMD d1,40,@SWSETPANETEXT,0,stattext
 ’ Animate the Main Dialog Window Effect when it Opens
 AnimateWindow(d1, 500,
@AW_VER_NEGATIVE|@AW_ACTIVATE) :’ API
 ENDSELECT
RETURN

THE CODE THAT STARTS THE FTP NOW! PROGRAM

The following code starts the FTP NOW! program running.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 74

.

-----------------------DESCRIPTION------

SHOWDIALOG d1 - Displays the Main
Dialog
Window of FTP NOW!

CreateTheImage is a SUB that creates an
Image
List of the Icons used in the List View
Controls.

hwndListViewLoc and hwndListViewRem
are
Handles to the LOCAL and REMOTE List
View
Controls. The Handles are used to add the
Icons
to the List View Controls.

WAITUNTIL run=0 is a loop control to keep
the Windows Messages getting processed
while
run = 1

AnimateWindow is an API Function to end
the
Display of the FTP NOW! Window.

CLOSEDIALOG d1 - closes FTP NOW!
Window.
END - Ends the FTP NOW! Program.

--------------------------------CODE--------------------

-----------------------START PROGRAM-----------
 SHOWDIALOG d1

CreateTheImage SUB - Creates Image List for Icons

hwndListViewLoc = GetDlgItem(d1, 2024+10)
hwndListViewRem = GetDlgItem(d1, 2024+20)

run = 1

WAITUNTIL run = 0

AnimateWindow(d1, 600,
@AW_BLEND|@AW_HIDE)

CLOSEDIALOG d1

END

THE SUBROUTINES THAT WORK FROM THE ABOVE START UP CODE AND THE
MAIN MESSAGE SUB DiagOne ARE THE ONLY THING LEFT TO DO. We will work
down through the DiagOne Sub to create the Subs.

The Image List is created to make the Icons available for the two List View Controls. Because the
Image List is used by more than one List View it is necessary to set the

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 75

LVS_SHAREIMAGELISTS flag in both of our List View Controls. They are ID 10 and ID 20.

1. Create Image List

2. Loadimage from
File

3. Add loaded Icon to
the Image List

4. 2. and 3. are done
3 times to load the
3 Icons needed.

5. Sendmessage to
List View (ID 10)
to set Image List
into the List View.

6. Sendmessage to
List View (ID 20)
to set Image List
into the List View.

--Image List---------------------------
SUB CreateTheImage
 DEF hiItem1,hiItem2,hiItem3:INT
 DEF himlSmall:INT

 himlSmall=ImageList_Create(GetSystemMetrics(@SM_CXSMICON),
[Next Line]
 GetSystemMetrics(@SM_CYSMICON), 1, 3, 1)

 hiItem1 = LOADIMAGE
(GETSTARTPATH+"UpFold.ico",@IMGICON)
 ImageList_AddIcon(himlSmall, hiItem1)

 hiItem2 = LOADIMAGE
(GETSTARTPATH+"Fold1.ico",@IMGICON)
 ImageList_AddIcon(himlSmall, hiItem2)

 hiItem3 = LOADIMAGE (GETSTARTPATH+"Text.ico",@IMGICON)
 ImageList_AddIcon(himlSmall, hiItem3)

 SENDMESSAGE d1,@LVM_SETIMAGELIST,@LVSIL_SMALL,
himlSmall,10
 SENDMESSAGE d1,@LVM_SETIMAGELIST,@LVSIL_SMALL,
himlSmall,20
RETURN

The DoSettings SUB
activates the Internet
Parameters
Dialog Window

--SETTINGS--------------------
SUB DoSettings
 ’ Load the settings dialog
 DOMODAL d2
RETURN

The BeginWithFile
Sub loads the

--GET PARAM.DAT FILE------
SUB BeginWithFile

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 76

PARAM.DAT File
from Disc and sets
the Internet Connect
Variables.

1. Set Cursor WAIT

2. Open the File
PARAM.DAT

3. Read into settings

4. Set Variables with
settings data

5. Set Cursor
ARROW

 SETCURSOR (d2, @CSWAIT)
 IF (OPENFILE(paramfile,GETSTARTPATH
+"PARAM.DAT","R") = 0)
 GET paramfile,1,settings
 CLOSEFILE paramfile
’ Transfer to DiagTwo edit boxes and Variables used by
FtpPutFile
 profile = settings.profile
 site = settings.host
 userid = settings.userid
 pword = settings.pword
 ENDIF
 SETCURSOR (d2, @CSARROW)
RETURN

The ConnectSite Sub connects the FTP NOW! Program to theInternet Site that is in the Variable
site (settings.site)

1. Set Cursor WAIT

2. Open settings for
Internet from the
Registery

3. Set Status Bar with
"Connected"

4. Connect to site with
userid and pword
with FTP Service

5. Set Status Bar with
"Connected" + site

6. GetRemoteFolder
SUB. Reads the
Folder on the
Internet Site

--CONNECT---------------------
SUB ConnectSite
 DEF stattext:STRING

 SETCURSOR (d2, @CSWAIT) ’ Open an internet connection
with settings in Registery (Preconfig)
 hopen =
InternetOpenA(ref,@INTERNET_OPEN_TYPE_PRECONFIG,"",
"",0)

 IF (hopen)
 stattext = "Connected"
 CONTROLCMD d1,40,@SWSETPANETEXT,0,stattext ’
Connect to Internet Site with userid and pword using FTP Service
 hconnect = InternetConnectA(hopen,site,
@INTERNET_DEFAULT_FTP_PORT,userid,pword,
@INTERNET_SERVICE_FTP,@INTERNET_FLAG_PASSIVE,
0)
 IF (hconnect)
 stattext = "Connected - " + site

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 77

7. Status Bar "Done"

8. Set Cursor ARROW

 CONTROLCMD d1,40,@SWSETPANETEXT,0,stattext
 GetRemoteFolder :’ SUB Read Folder on Internet Site
into LV 20
 ENDIF
 ENDIF

 stattext = "Done"
 CONTROLCMD d1,40,@SWSETPANETEXT,0,stattext
 SETCURSOR (d2, @CSARROW)
RETURN

The UploadFiles Sub Uploads Files from the Local Computer to the Web Site address which is set
in the List View (ID 20)

 1. Set Cursor WAIT

 2. Check Mode for
Transfer Mode

 3. Get number of
entries in List View

 4. WHILE item <=
count. Iterate
through List View

 5. If Selected and the
Attribute = ’0’ then
it is a Selected Item
in the List View

 6. Check if the File
Attrib is ASCII
(".HTM or .TXT")
Done to ensure
the settings by User are
correct.

---------------UPLOAD FILES TO INTERNET SERVER--------
SUB UploadFiles
 DEF count, item, selected, Ans, error, AcFnd:INT
 DEF Str1, text, DirPth, Attrib, source, dest:STRING
 DEF TheState, Pos:INT

 SETCURSOR (d2, @CSWAIT)
 ’ Check for type of Transfer Mode
 IF (GETSTATE(d1, 5) = 1) THEN TheState = 3
 IF (GETSTATE(d1, 4) = 1) THEN TheState = 2
 IF (GETSTATE(d1, 3) = 1) THEN TheState = 1
 ’ Get the Folder Path from the Edit Box (ID 9)
 DirPth = GETCONTROLTEXT(d1, 9)
 item = 0
 ’ Get the number of Folders and Files in the List View
 count = CONTROLCMD(d1, 10, @LVGETCOUNT)
 ’ Iterate through the List View with the WHILE Function
 WHILE (item <= count)
 selected = CONTROLCMD(d1, 10,
@LVGETSELECTED, item)
 text = CONTROLCMD(d1, 10, @LVGETTEXT, item, 0)
 Attrib = CONTROLCMD(d1, 10, @LVGETTEXT, item, 1)
’ Check if this item in the List View is selected and is a File
Attrib = 0

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 78

 7. If TheState = 3
Auto Mode
Auto Mode can
be both ASCII
and Binary
Mode Files

 8. If AcFnd then send
by ASCII Mode
(HTM or TXT)
extensions were
found in Files . . .

 9. . . . else send by
Binary Mode

10. If TheState = 2
ASCII Mode

11. Send by ASCII

12. If TheState = 1
Binary Mode

13. Send by Binary
Mode

14. Set Cursor to
ARROW

15. Set the Status Bar
to "Done"

16. GetRemoteFolder
Sub. The Sub will
read the Web
Folder into the List
View, displaying
the Updated File
List after the Up-
load is complete.

 AcFnd = 0
 Str1 = UCASE$(text)
 Pos = INSTR(1, Str1, ".HTM")
 IF(Pos > 0) THEN AcFnd = 1
 Pos = INSTR(1, Str1, ".TXT")
 IF (Pos > 0) THEN AcFnd = 1
 source = DirPth + "\" + text
 dest = text
 Str1 = ""
 IF (TheState = 3)
 IF (AcFnd > 0)
 Str1 = "Uploading " + text + " file by ASCII"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Str1
 error = FtpPutFileA(hconnect, source,
dest, [Next Line]
 @FTP_TRANSFER_TYPE_ASCII, 0)
 ELSE
 Str1 = "Uploading " + text + " file by Binary"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Str1
 error = FtpPutFileA(hconnect, source,
dest, [Next Line]
 @FTP_TRANSFER_TYPE_BINARY, 0)
 ENDIF
 ELSE
 IF (TheState = 2)
 Str1 = "Uploading " + text + " file by ASCII"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Str1
 error = FtpPutFileA(hconnect, source, dest,
[Next Line]
 @FTP_TRANSFER_TYPE_ASCII, 0)
 ENDIF
 IF (TheState = 1)
 Str1 = "Uploading " + text + " file by Binary"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Str1
 error = FtpPutFileA(hconnect, source,

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 79

dest, [Next Line]
 @FTP_TRANSFER_TYPE_BINARY, 0)
 ENDIF
 ENDIF
 ENDIF
 item = item + 1
 ENDWHILE
 SETCURSOR (d2, @CSARROW)
 Str1 = "Done"
 CONTROLCMD d1,40,@SWSETPANETEXT,0,Str1
 GetRemoteFolder
RETURN

The DownloadFiles Sub Downloads Files from the Web Site to the Local Folder address which is
set in the List View (ID 10)

 1. Set Cursor WAIT

 2. Check Mode for
Transfer Mode

 3. Get number of
entries in List View

 4. WHILE item <=
count. Iterate
through List View

 5. If Selected and the
Attribute = ’0’

it is a Selected
Item in List View

 6. Check if the File
Attrib is ASCII
(".HTM or .TXT")
Done to ensure

-------------DOWNLOAD FILES FROM REMOTE FOLDER-------

SUB DownloadFiles
 DEF count,item,selected,Ans,error,AsciFnd:INT
 DEF text,DirPth,Attrib,source,dest:STRING
 DEF Temp,Str1:STRING
 DEF TheState:INT

 SETCURSOR (d2, @CSWAIT)
 ’ Check for type of Transfer Mode User has Selected
 IF (GETSTATE(d1, 5) = 1) THEN TheState = 3
 IF (GETSTATE(d1, 4) = 1) THEN TheState = 2
 IF (GETSTATE(d1, 3) = 1) THEN TheState = 1
 ’ Get the Path to the Folder to Download to
 DirPth = GETCONTROLTEXT(d1, 9)
 item = 0
 ’ Get the number of Folders and Files in the List View (ID 10)
 count = CONTROLCMD(d1, 20, @LVGETCOUNT)
 ’ Iterate through List View with WHILE Function
 WHILE (item <= count)
 selected = CONTROLCMD(d1, 20, @LVGETSELECTED, item)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 80

the settings by
User are correct.

 7. If TheState = 3
Auto Mode
Auto Mode can
be both ASCII
and Binary
Mode Files

 8. If AsciFnd then send
by ASCII Mode
(HTM or TXT)
extensions were
found in Files . . .

 9. . . . else send by
Binary Mode

10. If TheState = 2
ASCII Mode

11. Send by ASCII

12. If TheState = 1
Binary Mode

13. Send by Binary
Mode

14. Set Cursor to
ARROW

15. Set the Status Bar
to "Done"

16. GetLocalFolder
Sub. The Sub will
read the Local
Folder into the List
View, displaying
the Updated File
List after the Down-
load is complete.

 Attrib = CONTROLCMD(d1, 20, @LVGETTEXT, item, 1)
 ’ Check if this item in the List View is selected and is a File Attrib
= 0
 IF ((selected > 0) & (Attrib = "0"))
 source = text
 dest = DirPth + "\" + text
 AsciFnd = 0
 Str1 = UCASE$(text)
 IF (INSTR(Str1, ".HTM") > 0) THEN AsciFnd = 1
 IF (INSTR(Str1, ".TXT") > 0) THEN AsciFnd = 1
 ’ Download the file
 IF (TheState = 3)
 IF (AsciFnd = 1)
 Temp = "Downloading " + text + " file by ASCII"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Temp
 error = FtpGetFileA(hconnect, source, dest, 1, 0,
[Next Line]
 @FTP_TRANSFER_TYPE_ASCII, 0)
 ELSE
 Temp = "Downloading " + text + " file by Binary"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Temp
 error = FtpGetFileA(hconnect, source, dest, 1, 0,
 @FTP_TRANSFER_TYPE_BINARY, 0)
 ENDIF
 ELSE
 IF (TheState = 2)
 Temp = "Downloading " + text + " file by ASCII"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Temp
 error = FtpGetFileA(hconnect, source, dest, 1, 0,
[Next Line]
 @FTP_TRANSFER_TYPE_ASCII, 0)
 ENDIF
 IF (TheState = 1)
 Temp = "Downloading " + text + " file by Binary"
 CONTROLCMD
d1,40,@SWSETPANETEXT,0,Temp

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 81

 error = FtpGetFileA(hconnect, source, dest, 1, 0,
[Next Line]
 @FTP_TRANSFER_TYPE_BINARY, 0)
 ENDIF
 ENDIF
 ENDIF
 item = item + 1
 ENDWHILE
 SETCURSOR (d2, @CSARROW)
 Temp = "Done"
 CONTROLCMD d1,40,@SWSETPANETEXT,0,Temp
 GetLocalFolder
RETURN

DClkChDirLoc Sub is used when you Double Click on a Folder in the Local List View. This
bypasses the need to click the (ChDir) Button.

 1
.

Get itemno from the
lv.iItem. This is the
item you Double
Clicked on in the
List View.

 2
.

FIRST OPTION
If Attrib = 6

you wish to go up
one level in the
Folder Tree.

 3
.

Get SearchPath
from the Edit Box
(ID 9).

------------DOUBLE CLICK - CHANGE FOLDER - LOCAL
SUB DClkChDirLoc

 DEF itemno,Fnd,loc:INT
 DEF Attrib,SearchPath,Paths:STRING

’ itemno is the number of the item you Double Clicked on in
the List View
 itemno = lv.iItem

’ DirName contains Name of the Folder you Double Clicked
in the List View
 DirName =
CONTROLCMD(d1,10,@LVGETTEXT,itemno,0)

 ’ Attrib contains a number to represent DirName
Attribute
 Attrib =
CONTROLCMD(d1,10,@LVGETTEXT,itemno,1)

 ’ OPTION ONE
 IF (Attrib = "6")

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 82

This is the Current
Path of the LOCAL
List View.

 4
.

With INSTR delete
the last Folder.
e.g.: "C:\Base\data"
would become
"C:\Base"--------------

 5
.

Set Edit Box
(ID 9) with new
Folder Address.
e.g.: "C:\Base"

 6
.

GetLocalFolder
Sub to update the
contents of the List
View.

 7
. SECOND OPTION

 8
.

If Attrib = 16
you have Double
Clicked on a Folder.

 9
.

Get Current Folder
Path from Edit Box
(ID 9) and add
DirName.
e.g.: "C:\Base"
would become
"C:\Base\data"

1
0.

Set Edit Box
(ID 9) with new
Folder Address.
e.g.: "C:\Base"

1
1.

GetLocalFolder
Sub to update the
contents of the

 ’ Get the Folder Address of the Current Folder in List View
 SearchPath = GETCONTROLTEXT (d1, 9)
 SearchPath = SearchPath
 Fnd = 1
 pos = 1

 ’ Look for "\" in the SearchPath String to locate the LAST
"\"
 DO
 IF (INSTR(pos, SearchPath, "\") > 0) THEN loc = pos
ELSE Fnd = 0
 pos = pos + 1
 UNTIL Fnd = 0

 ’ Copy into Paths the new path with the LEFT$ Function
 Paths = LEFT$(SearchPath, loc-1)

 ’ Put the new Path into the Edit Box (ID 9) above the List
View
 SETCONTROLTEXT (d1, 9, Paths)

 ’ Use the Sub GetLocal Folder to update the contents of the
New Folder
 GetLocalFolder

 ENDIF

 ’ OPTION TWO
 IF (Attrib = "16")
’ Get the Folder Address of the Current Folder in List View
 SearchPath = GETCONTROLTEXT (d1, 9)

’ Add the Double Clicked Folder in the List View to the
SearchPath
 SearchPath = SearchPath + "\" + DirName

’ Put new List View Folder Path into the Edit Box (ID 9)
[above List View]
 SETCONTROLTEXT (d1, 9, SearchPath)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 83

List View.
’ Use the Sub GetLocal Folder to update the contents of the
New Folder
 GetLocalFolder

 ENDIF

RETURN

The MakeDirLocal
Sub allows you to Create a New
Folder.

1. Run the InpDia
Dialog

2. Check for IDOK
and an entry in the
DirName from the
InpDia Dialog.

3. Add the DirName
to the Path in Edit
Box (ID 9)

4. CreateDir

5. GetLocalFolder
Sub to update
Folder contents.

------------------------MAKE NEW DIRECTORY - LOCAL-
SUB MakeDirLocal

 DEF effor,Ans: INT
 DEF DirPath:STRING

 Ans = DOMODAL(InpDia)

 IF (Ans = @IDOK)
 IF (DirName <> "")
 DirPath = GETCONTROLTEXT(d1, 9)
 DirPath = DirPath + "\" + DirName
 error = CREATEDIR(DirPath)
 ENDIF

’ Use the Sub GetLocal Folder to update the contents of the
Folder
 GetLocalFolder

 ENDIF

RETURN

 The SelectFolder Sub allows you to change to a
different Folder via the Folder Browser.

----------------------SELECT FOLDER --
----FOR CHANGE FOLDER LOCAL
SUB SelectFolder
 DEF Buffer:STRING
 DEF bi:BROWSEINFO
 DEF lpIDList:INT

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 84

 bi.hOwner = d1
 bi.pszDisplayName = Buffer
 bi.lpszTitle = "Select Directory:"
 bi.ulFlags = 0x00000001
 lpIDList = SHBrowseForFolder(bi)
 IF (lpIDList <> 0)
 pszPath =
SHGetPathFromIDList(lpIDList,Buffer)
 CoTaskMemFree(lpIDList)
 ENDIF
 IF (Buffer <> "")
 ’ Set Edit Box with Folder Address
 SETCONTROLTEXT (d1, 9, Buffer)
 ENDIF
RETURN

The GetLocalFolder Sub reads the Selected Folder into the List View File List. When the Folder is
searched Icons are added to each Item in the List View.
There are three different Icons: one for an Up (Parent Folder), one for Folders, one for
Files.
The Icons were loaded into the Image List and inserted into the List View Controls Icon List when
FTP NOW! was started.

--
 1. Set Cursor WAIT

 2. Get Path from Edit

---------------------------------READ DIRECTORY - LOCAL-----
SUB GetLocalFolder
 DEF error,hSearch,itemno:INT
 DEF SearchPath,DrNm:STRING

 SETCURSOR (d2, @CSWAIT)
 SearchPath = GETCONTROLTEXT (d1, 9)
 itemno = 0
 ’ Read files, folders into LV [10]
 hSearch = FINDOPEN(SearchPath + "*.*")
 IF (hSearch)
 CONTROLCMD d1, 10, @LVDELETEALL ’Clear LV
[10]

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 85

Box (ID 9)

 3. FINDOPEN Path

 4. Empty List View

 5. Set up DO UNTIL
Function with
FINDNEXT

 6. Check for Folder

 7. Insert Item into
List View

 8. SendMessage to
get Item from lvi
Variable

 9. SendMessage to
set lvi with the
Folder Icon

10. Increment itemno

11. Check for Files

12. Insert Item into
List View

13. SendMessage to
get Item from lvi
Variable

14. SendMessage to
set lvi with the
Folder Icon

15. Increment itemno

16. FINDCLOSE
Closes Search.

17. Set Cursor ARROW

 DO
 DrNm = FINDNEXT(hSearch)
 IF (DrNm = "..")
 CONTROLCMD
d1,10,@LVINSERTITEM,itemno,DrNm
 CONTROLCMD d1,10,@LVSETTEXT,itemno,1,"6"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

SendMessageA(hwndListViewLoc,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 0

SendMessageA(hwndListViewLoc,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 ENDIF
 IF (DrNm <> ".") & (DrNm <> "..") & (DrNm <> "")
 IF (GetFileAttributesA(SearchPath + "\" + DrNm)
& [Next Line]
 @FILE_ATTRIBUTE_DIRECTORY)
 ’ Save as DIR to LV [10]
 CONTROLCMD
d1,10,@LVINSERTITEM,itemno,DrNm
 CONTROLCMD
d1,10,@LVSETTEXT,itemno,1,"16"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

SendMessageA(hwndListViewLoc,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 1

SendMessageA(hwndListViewLoc,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 ELSE
 ’ Save as File to LV [10]
 CONTROLCMD
d1,10,@LVINSERTITEM,itemno,DrNm
 CONTROLCMD

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 86

d1,10,@LVSETTEXT,itemno,1,"0"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

SendMessageA(hwndListViewLoc,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 2

SendMessageA(hwndListViewLoc,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 ENDIF
 ENDIF
 UNTIL DrNm = ""
 ’ Close the Search for Files and Folders Function
 FINDCLOSE hSearch
 ELSE
 MessageBeep(0)
 ENDIF
 SETCURSOR (d2, @CSARROW)
RETURN

The DeleteDirLocal
Sub allows you to Select
a Folder in the LOCAL
List View and Delete it.

 1. Get number of items

in List View

 2. Create WHILE loop
to iterate through the
List View

 3. Check if item is
selected

 4. If Attrib = 16

----------------------------------DELETE FOLDER - LOCAL---------
SUB DeleteDirLocal
 DEF count,item,selected,Ans,error:INT
 DEF text,DirPth,Attrib:STRING

 item = 0
 count = CONTROLCMD(d1, 10, @LVGETCOUNT)

 WHILE (item <= count)
 selected = CONTROLCMD(d1, 10, @LVGETSELECTED,
item)
 text = CONTROLCMD(d1, 10, @LVGETTEXT, item, 0)
 Attrib = CONTROLCMD(d1,10,@LVGETTEXT,item,1)
 IF (selected > 0)
 IF (Attrib = "16")
 IDLabel = "Delete This Folder"
 IDName = text
 Ans = DOMODAL(InpDia)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 87

Run InpDia Dialog

 5. If InpDia returns an
@IDOK get the
DirPth and add the
selected Folder to
the DirPth string

 6. REMOVEDIR
DirPth

 7. If any errors then
display Messagebox

 8. Increment item to
iterate through the
List View.

 9. After WHILE Loop
finished then
GetLocalFolder

10. List View File List
is now updated with
deleted Folders removed

 IF (Ans = @IDOK)
 DirPth = GETCONTROLTEXT(d1,9)
 DirPth = DirPth + "\" + text
 error = REMOVEDIR(DirPth)
 IF (error = 0)
 MESSAGEBOX d1,
[Next Line]
 "Selected Folder MUST be EMPTY of any FILES!",
"Delete Foler"
 ENDIF
 ENDIF
 IDLabel = "Name"
 IDName = ""
 ELSE
 MESSAGEBOX d1, "Selected Item NOT a Folder!", "Delete Folder"
 ENDIF
 ENDIF
 item = item + 1
 ENDWHILE

’ Use the Sub GetLocal Folder to update the contents of the Folder
 GetLocalFolder

RETURN

RenameFileLocal Sub
is used to Rename a File.

 1. Get number of items

in the List View

 2. Create a WHILE
Loop to iterate
through the List
View.

 3. If item is selected

--------------------------------------RENAME FILE- LOCAL -------
SUB RenameFileLocal
 DEF count,item,selected,Ans,error:INT
 DEF text,DirPth,Attrib,source,dest:STRING

 item = 0
 count = CONTROLCMD(d1, 10, @LVGETCOUNT)

’ Iterate through the List View to check each item for selected
state
 WHILE (item <= count)
 selected = CONTROLCMD(d1, 10,
@LVGETSELECTED, item)
 text = CONTROLCMD(d1, 10, @LVGETTEXT, item, 0)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 88

and Attrib = 0 then
a File is selected

 4. Set Static Text
Control and Edit
Box (in InpDia) to
show the File to be
Renamed

 5. Run InpDia to
confirm the Rename
of the File

 6. Add text to DirPth
to get source.
Add DirName (from
the InpDia) to
DirPth to get dest.

 7. COPYFILE
source to dest

 8. If no error then
DELETEFILE
source File

 9. Set Static Text and
Edit Box (InpDia)
to original text.

10. GetLocalFolder to
Update Folder with
changed File Names

 Attrib = CONTROLCMD(d1, 10, @LVGETTEXT, item, 1)
 ’ If item is selected and is a File (Attrib = 0)
 IF ((selected) & (Attrib = "0"))
 IDLabel = "Rename File " + text + " to . . ."
 IDName = ""
 Ans = DOMODAL(InpDia)
 IF (Ans = @IDOK)
 IF (DirName <> text)
 DirPth = GETCONTROLTEXT(d1,9)
 source = DirPth + "\" + text
 dest = DirPth + "\" + DirName
 fail = 1 :’Not to overwrite if file exists
 error = COPYFILE(source, dest, fail)
 IF (error) THEN error = DELETEFILE(source)
 ELSE
MESSAGEBOX d1, "Filename Already Exists!", "Rename File"
 ENDIF
 ENDIF
 ’ Reset IDLabel and IDName to original settings
 IDLabel = "Name"
 IDName = ""
 ENDIF
 ’ Increment item so as to go to next item in List View
 item = item + 1
 ENDWHILE

’ Use the Sub GetLocal Folder to update the contents of the
Folder
 GetLocalFolder

RETURN

DeleteFileLocal
Sub allows you to select
File/s to be Deleted
from the Folder.

-------------------------------------DELETE FILE - LOCAL---------
SUB DeleteFileLocal
 DEF count,item,selected,Ans,error:INT
 DEF text,DirPth,Attrib:STRING

 item = 0
 count = CONTROLCMD(d1, 10, @LVGETCOUNT)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 89

1. Get number of items

in the List View

2. Create a WHILE
Loop to iterate
through the List
View

3. If item is selected
and Attrib = 0 then
a File is selected

4. Set Static Text
Control and Edit
Box (in InpDia) to
show the File to be
Deleted

5. Run InpDia to
confirm the Delete
of the File.

6. Add text to DirPth
to get Path of File
to Delete.

7. DELETEFILE
DirPth

8. Set Static Text and
Edit Box (InpDia)
to original text.

9. GetLocalFolder to
Update Folder without
deleted File Names

’ Iterate through the List View to check each item for selected
state
 WHILE (item <= count)
 selected = CONTROLCMD(d1, 10, @LVGETSELECTED,
item)
 text = CONTROLCMD(d1, 10, @LVGETTEXT, item, 0)
 Attrib = CONTROLCMD(d1, 10, @LVGETTEXT, item, 1)

 ’ If item is selected and is a File (Attrib = 0)
 IF ((selected) & (Attrib = "0"))
 IDLabel = "Delete This File"
 IDName = text
 Ans = DOMODAL(InpDia)
 IF (Ans = @IDOK)
 DirPth = GETCONTROLTEXT(d1,9)
 DirPth = DirPth + "\" + text
 error = DELETEFILE(DirPth)
 ENDIF
 ’ Reset IDLabel and IDName to original settings
 IDLabel = "Name"
 IDName = ""
 ENDIF

 ’ Increment item so as to go to next item in List View
 item = item + 1
 ENDWHILE

’ Use the Sub GetLocal Folder to update the contents of the
Folder
 GetLocalFolder

RETURN

DClkChDirRem Sub is used when you Double Click on a Folder in the Remote List View. This
bypasses the need to click the (ChDir) Button.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 90

 1. Get itemno in Remote List View (ID
20) from lv UDT

 2. Get Folder Name into DirNm string

 3. Get Attrib of the itemno

 4. OPTION ONE
 If Attrib is equal to ’6’

 5. Get Folder Path into
SearchPath string

 6. Find last "/" in Path and
use LEFT$ to remove last
Folder from SearchPath

 7. If Paths is an empty string
then set Paths to "/"

 8. FtpSetCurrentDirectoryA to the new
Paths string

 9. GetRemoteFolder to
update List View

10. OPTION TWO
 If Attrib = 16

Get SearchPath and add
DirNm

11. Set Edit Box (ID 19) in
Remote to the SearchPath

DOUBLE CLICK - CHANGE DIRECTORY
REMOTE
SUB DClkChDirRem
 DEF itemno,Fnd,loc:INT
 DEF Attrib,SearchPath,Paths,DirNm:STRING

’ Get itemno from the lv UDT - This is the Item you
Double Clicked
 itemno = lv.iItem
 DirNm =
CONTROLCMD(d1,20,@LVGETTEXT,itemno,0)
 Attrib =
CONTROLCMD(d1,20,@LVGETTEXT,itemno,1)
 ’ If Attrib is up one level in the Folder Tree
 IF (Attrib = "6")
 SearchPath = GETCONTROLTEXT (d1, 19)
 Fnd = 1
 pos = 1
’ Get new Path by removing Last Folder from
Current Path in ID 19
 DO
 IF (INSTR(pos, SearchPath, "/") > 0) THEN loc
= pos ELSE Fnd = 0
 pos = pos + 1
 UNTIL Fnd = 0
 Paths = LEFT$(SearchPath, loc-1)
 ’ If Paths empty set to Root Directory "/"
 IF (Paths = "") THEN Paths = "/"
 SETCONTROLTEXT (d1, 19, Paths)
 ’ Use API in Wininet.dll to Set Current Folder
 error = FtpSetCurrentDirectoryA(hconnect, Paths)
’ Use Sub to get contents of the new Folder in List
View (ID 20)
 GetRemoteFolder
 ENDIF
 ’ Check if Selected item is a Folder
 IF (Attrib = "16")
 SearchPath = GETCONTROLTEXT (d1, 19)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 91

12. FtpSetCurrentDirectoryA with the
SearchPath

13. GetRemoteFolder to update List View
File List

 SETCONTROLTEXT (d1, 19, SearchPath)
 ’ Use API in Wininet.dll to Set Current Folder
 error = FtpSetCurrentDirectoryA(hconnect, SearchPath)

’ Use Sub to get contents of the new Folder in List
View (ID 20)
 GetRemoteFolder
 ENDIF

RETURN

MakeDirRem Sub
is called when you
want to create a
New Folder on the
Web Site.

1. Call InpDia Dialog

2. Obtain New Folder
Name from InpDia

3. If @IDOK then
FtpCreateDirectoryA
with DirName

4. If new folder created
OK then Update the
Remote List View
Folder by calling
GetRemoteFolder

---------------------MAKE NEW DIRECTORY -
REMOTE

SUB MakeDirRem
 DEF ans:INT

 ’ Run InpDia to get the Name of the New Folder
 Ans = DOMODAL(InpDia)

 IF (Ans = @IDOK)
’ Call FtpCreateDirectory from Wininet.dll to Create
New Folder
 Ans = FtpCreateDirectoryA(hconnect, DirName)

’ If Successful then Update the Remote Folder in the
List View [ID 20]
 IF (Ans) THEN GetRemoteFolder

 ENDIF

RETURN

ChangeDirRemote
Sub is called when
you Select a Folder in
the REMOTE List View
and then Click the
Ch Dir Button.

--------------------CHANGE DIRECTORY - REMOTE
SUB ChangeDirRemote
 DEF count,item,selected,Ans,error:INT
 DEF text,Attrib,MyPath:STRING

 ’ Get the number of items (count) in the List View

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 92

 1. Get number of items

in List View (ID 20)

 2. Create WHILE Loop
to iterate through the
List View

 3. Check if item is
selected

 4. Check if Attrib = "16"

 5. Set InpDia IDLabel

 6. Set IDName with
content of text

 7. Run InpDia to get
the New Folder
Name

 8. If @IDOK from
InpDia then get
MyPath from Edit
Box (ID 19) and add
text to MyPath

 9. Call the Wininet.dll
FtpSetCurrentDirectory
Function to set the
New Folder to the
MyPath string

10. If error > 0 (means no
error found) creating
new Folder set item
to count + 10 to exit
the WHILE loop

 item = 0;
 count = CONTROLCMD(d1, 20, @LVGETCOUNT)

’ Set up a WHILE Loop to iterate through the List
View
 WHILE (item <= count)
selected = CONTROLCMD(d1, 20,
@LVGETSELECTED, item)
text = CONTROLCMD(d1, 20, @LVGETTEXT,
item, 0)
Attrib = CONTROLCMD(d1, 20, @LVGETTEXT,
item, 1)

 ’ Check if item is selected and text is valid
 IF ((selected > 0) & (Attrib = "16"))
 ’ Set InpDia Label and Edit Box
 IDLabel = "Change To This Folder"
 IDName = text
’ Run InpDia Dialog to get the Folder Name to change
to
 Ans = DOMODAL(InpDia)

 IF (Ans = @IDOK)
 MyPath = GETCONTROLTEXT(d1,19)
 MyPath = MyPath + text
’ Use Wininet.dll Function to Set Current Directory to
MyPath
 error = FtpSetCurrentDirectoryA(hconnect,
MyPath)
 IF (error > 0)
 item = count + 10
 ENDIF
 ENDIF

 ’ Set InpDia Controls back to original content
 IDLabel = "Name"
 IDName = ""
 ENDIF

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 93

11. Set InpDia Controls
to original settings

12. GetRemoteFolder
to Update the List
View Folder contents

 ’ Increment item to iterate through List View
 item = item + 1
 ENDWHILE

’ If finished Update Remote List View with Folder
Contents
’ If item > count + 4 then Change Folder has been
Accepted
 IF (item > count + 4) THEN GetRemoteFolder
RETURN

DelDirRemote Sub is used
when you select a Folder
in the Remote List View
and then Click the
Del Dir Button.

 1. Get number of items

in List View (ID 20)

 2. Create WHILE Loop
to iterate through the
List View

 3. Check if item is
selected

 4. Check if Attrib = "16"

 5. Set InpDia IDLabel

 6. Set IDName with
content of text

 7. Run InpDia to check
the Remove Folder
Name

 8. If @IDOK from
InpDia then Remove

----------------REMOVE DIRECTORY - REMOTE----
SUB DelDirRemote
 DEF count,item,selected,Ans,error:INT
 DEF text,Attrib,MyPath:STRING

 ’ Get the number of items (count) in the List View
 item = 0
 count = CONTROLCMD(d1, 20, @LVGETCOUNT)

’ Set up a WHILE Loop to iterate through the List
View
 WHILE (item <= count)
selected = CONTROLCMD(d1, 20,
@LVGETSELECTED, item)
text = CONTROLCMD(d1, 20, @LVGETTEXT,
item, 0)
Attrib = CONTROLCMD(d1, 20, @LVGETTEXT,
item, 1)
 ’ Check if item is selected and text is valid
 IF ((selected > 0) & (Attrib = "16"))
 ’ Set InpDia Label and Edit Box
 IDLabel = "Delete Directory"
 IDName = text
’ Run InpDia Dialog to check the Folder Name to
Remove
 Ans = DOMODAL(InpDia)
 IF (Ans = @IDOK)
’ Use Wininet.dll Function to Set Remove Directory in

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 94

Folder

 9. Call the Wininet.dll
FtpRemoveDirectory
Function to delete the
Folder in text

10. If error > 0 (means no error) removing
the
Folder set item to
count + 10 to exit
the WHILE loop

11. Set InpDia Controls
to original settings

12. GetRemoteFolder
to Update the List
View Folder contents

text
 error = FtpRemoveDirectoryA(hconnect, text)
 IF (error > 0) THEN item = count + 10
 IF (error = 0)
 MESSAGEBOX d1, "Selected Folder MUST
be EMPTY of any FILES!", "Delete Folder"
 ENDIF
 ENDIF
 ’ Set InpDia Controls back to original content
 IDLabel = "Name"
 IDName = ""
 ENDIF
 ’ Increment item to iterate through List View
 item = item + 1
 ENDWHILE

’ If finished Update Remote List View with Folder
Contents
’ If item > count + 4 then Remove Folder has been
Accepted
 IF (item > count + 4) THEN GetRemoteFolder

RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 95

RenameFileRem Sub
is active when you
select a File in the
List View and then
Click the Ren File
Button.

 1. Get number of items
in List View (ID 20)

 2. Create WHILE Loop to iterate through
the List View

 3. Check if item is
selected

 4. Check if Attrib is
equal to "0"

 5. Set InpDia IDLabel

 6. Run InpDia to input
the Rename File
Name

 7. If @IDOK from
InpDia then Rename File

 8. Call the Wininet.dll
FtpRenameFile
Function to Rename the File in text to
the File in DirName

 9. Set InpDia Controls
to original settings

10. GetRemoteFolder
to Update the contents of the List View

-------------------------RENAME FILE - REMOTE
SUB RenameFileRem
 DEF count,item,selected,Ans,error:INT
 DEF text,Attrib:STRING

 ’ Get the number of items (count) in the List View
 item = 0
 count = CONTROLCMD(d1, 20,
@LVGETCOUNT)

’ Set up a WHILE Loop to iterate through the List
View
 WHILE (item <= count)
 selected = CONTROLCMD(d1, 20,
@LVGETSELECTED, item)
 text = CONTROLCMD(d1, 20,
@LVGETTEXT, item, 0)
 Attrib = CONTROLCMD(d1, 20,
@LVGETTEXT, item, 1)
’ Check if item is selected and Attrib is equal to "0"
(File)
 IF ((selected > 0) & (Attrib = "0"))
 ’ Set InpDia Label and Edit Box
 IDLabel = "Rename File " + text + " to . . ."
 IDName = ""
’ Run InpDia Dialog to get the name to Rename File to
 Ans = DOMODAL(InpDia)
 IF (Ans = @IDOK)
 IF (DirName <> text)
’ Use Wininet.dll Function to Rename File in text to
DirName
 error = FtpRenameFileA(hconnect, text, DirName)
 ELSE
MESSAGEBOX d1, "Filename Already Exists!",
"Rename File"
 ENDIF
 ENDIF
 ’ Set InpDia Controls back to original content
 IDLabel = "Name"

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 96

 IDName = ""
 ENDIF
 ’ Increment item to iterate through List View
 item = item + 1
 ENDWHILE

’ If finished Update Remote List View with changed
Folder Contents
 GetRemoteFolder

RETURN

DeleteFileRem Sub
is activated when you
select a File in the
Remote List View
and Click on the
Del File Button.

 1. Get number of items
in List View (ID 20)

 2. Create WHILE Loop to iterate through
the List View

 3. Check if item is
selected

 4. Check if text is not equal to ".."

 5. Set InpDia IDLabel

 6. Run InpDia to check

----------------------DELETE FILE - REMOTE
SUB DeleteFileRem
 DEF count,item,selected,Ans,error:INT
 DEF text,MyPath:STRING

 ’ Get the number of items (count) in the List View
 item = 0
 count = CONTROLCMD(d1, 20,
@LVGETCOUNT)

’ Set up a WHILE Loop to iterate through the List
View
 WHILE (item <= count)
 selected = CONTROLCMD(d1, 20,
@LVGETSELECTED, item)
 text = CONTROLCMD(d1, 20,
@LVGETTEXT, item, 0)

’ Check if item is selected and Attrib is not equal to
".." (File)
 IF ((selected) & (text <> ".."))
 ’ Set InpDia Label and Edit Box

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 97

the Delete File Name

 7. If @IDOK from
InpDia then Delete File

 8. Call the Wininet.dll
FtpDeleteFile
Function to Delete the File in text

 9. Set InpDia Controls
to original settings

10. GetRemoteFolder
to Update the contents of the List View

 IDLabel = "Delete File "
 IDName = text
 ’ Run InpDia Dialog to check the name of Delete File
 Ans = DOMODAL(InpDia)
 IF (Ans = @IDOK)
 ’ Use Wininet.dll Function to Delete File in text
 error = FtpDeleteFileA(hconnect, text)
 ENDIF
 ’ Set InpDia Controls back to original content
 IDLabel = "Name"
 IDName = ""
 ENDIF

 ’ Increment item to iterate through List View
 item = item + 1
 ENDWHILE

’ If finished Update Remote List View with changed
Folder Contents
 GetRemoteFolder

RETURN

GetRemoteFolder Sub is used whenever you wish to update the Files/Folders in the REMOTE List
View.
We use three main APIs in the Wininet.dll to achieve the task. They are:
FtpGetCurrentDirectoryA, FtpFindFirstFileA and InternetFindNextFileA. Also Icons are added to
the List View according to the File/Folder found. Additionally we add a Folder pointing to the
Parent Folder ().

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 98

 1. ALLOCMEM for mData

 2. Set Cursor to WAIT

 3. Use the Wininet.dll
with FtpGetCurrent-
Directory to get
Current Folder on
Web Site

 4. Set Edit Box (ID 19) in
Remote Group to the
Current Folder Path.

 5. Call FtpFindFirstFileA
to find First File

 6. Read mData in Memory
into pData UDT

 7. Clear the List View
(ID 20)

 8. FIRST ENTRY in the
LIST VIEW
Insert ".." into List View
to make Parent Folder
available. itemno = 0 as 0
is first entry in List View.

 9. Set lvi UDT to itemno
used for "..". This gets
the List View data
into lvi for this entry.

10. Get lvi data for itemno

------------------------GET FILES FOR REMOTE FOLDER----
SUB GetRemoteFolder
 DEF pData:WIN32_FIND_DATA
 DEF mData:MEMORY
 DEF hFind,itemno:INT
 DEF lRet:INT
 DEF lpdw:UINT
 DEF Tmp,path:STRING

 lpdw = 254
 ALLOCMEM mData,1,LEN(pData)
 SETCURSOR (d2, @CSWAIT)
 path = ""
 FtpGetCurrentDirectoryA(hconnect, path, lpdw) :’ Get Current
Folder
 SETCONTROLTEXT d1,19,path
 itemno = 0
 pData.cFileName = STRING$(259, 0)
 hFind = FtpFindFirstFileA(hconnect, "*.*", mData, 0, 0) :’
Find the first file
 READMEM mData,1,pData
 CONTROLCMD d1,20,@LVDELETEALL :’ Clear LV [20]
 CONTROLCMD d1,20,@LVINSERTITEM,itemno,".." :’ .. in
List View
 CONTROLCMD d1,20,@LVSETTEXT,itemno,1,"6"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0
 SendMessageA(hwndListViewRem,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 0
 SendMessageA(hwndListViewRem,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 IF (hFind <> 0) :’ if there’s no file, then exit sub
 ’put the filename in List View
 IF (pData.dwFileAttributes =
@FILE_ATTRIBUTE_DIRECTORY)
 CONTROLCMD
d1,20,@LVINSERTITEM,itemno,pData.cFileName
 CONTROLCMD d1,20,@LVSETTEXT,itemno,1,"16"

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 99

by LVM_GETITEMA

11. Set lvi.iImage to 0 -
which is the first Icon in
the Image List.

12. Save lvi with Icon with
LVM_SETITEMA
Now the List View we
have added has the Icon.

13. Increment itemno for the
next Item to go into the
List View.

14. SECOND ENTRY
If Attribute is Directory
insert into List View as a
Directory else insert as a
File

15. Insert pData.cFileName
into List View to make
Folder or File available.

16. Set lvi UDT to the itemno

17. Get lvi data for itemno

18. Set lvi.iImage to 1 if
Attribute is Directory
or Set lvi.iImage to
2 if a File

19. Save lvi with Icon

20. REPEAT ENTRIES
Set DO Loop to iterate
through rest of Folder

21. Use the Wininet API
InternetFindNextFileA
to locate any more Sub
Folders or Files in the
Current Folder Path

22. Insert them into the

 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

SendMessageA(hwndListViewRem,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 1

SendMessageA(hwndListViewRem,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 ELSE
 CONTROLCMD
d1,20,@LVINSERTITEM,itemno,pData.cFileName
 CONTROLCMD d1,20,@LVSETTEXT,itemno,1,"0"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

SendMessageA(hwndListViewRem,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 2

SendMessageA(hwndListViewRem,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 ENDIF
 lRet = 1 :’ Set for DO UNTIL
 DO
 pData.cFileName = STRING$(259, 0)
 lRet = InternetFindNextFileA(hFind, mData) :’ Find the
next file
 READMEM mData,1,pData
 IF (lRet <> 0) : ’ If no next file, exit do
 ’ Put the filename in List View [20]
 IF (pData.dwFileAttributes =
@FILE_ATTRIBUTE_DIRECTORY)
 CONTROLCMD d1,20,@LVINSERTITEM,
 itemno,pData.cFileName
 CONTROLCMD d1,20,@LVSETTEXT,itemno,1,"16"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 100

Remote List View,
then . . .

23. Update the List View
with the correct Icon.

24. After all the Folders and
Files are processed in the
DO Loop then use
InternetCloseHandle
Function to close the
FindFile Function.

25. Set Cursor ARROW

26. FREEMEM mData to
free the memory you
originally allocated.

SendMessageA(hwndListViewRem,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 1

SendMessageA(hwndListViewRem,@LVM_SETITEMA,0,lvi)
 ELSE
 CONTROLCMD d1,20,@LVINSERTITEM,
 itemno,pData.cFileName
 CONTROLCMD d1,20,@LVSETTEXT,itemno,1,"0"
 lvi.mask = LVIF_IMAGE
 lvi.iItem = itemno
 lvi.iSubItem = 0

SendMessageA(hwndListViewRem,@LVM_GETITEMA,0,lvi)
 lvi.iImage = 2

SendMessageA(hwndListViewRem,@LVM_SETITEMA,0,lvi)
 itemno = itemno + 1
 ENDIF
 ENDIF
 UNTIL (lRet = 0)
 InternetCloseHandle hFind : ’Close the search handle
 ENDIF
 SETCURSOR (d2, @CSARROW)
 FREEMEM mData
RETURN

FTP NOW! Program is a good example of how simple IBasic makes it to code powerful Internet
Applications for Windows. A few of the SUBroutines in the program could be made into one SUB with
parameters, however, the Code has been written in this style to make it simple to understand and follow.
To improve the program more you could add more Code, for example: Error Checking with MessagBox
notifying errors, if desired. The Code in this Article, Part II, added to the Code in Part I makes the
complete program.

For your convenience the full working program and the FTPNow.iba file and other associated files are
available in zip format. - Bizzy

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 101

Of Jigsaw Puzzles, Mice And Me

By

Paul Love (pel)

A few weeks ago, I put together a quick program that works like a simple sliding block puzzle:

You just click on the piece you want to move, then click on the square you want to move it to;
the program switches the two pieces around and eventually you wind up with the original
picture. This sample program only uses six pieces, but of course the more you use, the more
challenging the puzzle. There are a number of programs that can take an image and
split it into multiple pieces for you -- Adobe Photoshop for instance, although I used something
called "Dicer" (which is freeware) to make these pieces. Each of the images is 150 x 150, but if
you change the values for w and h in the "Initialization" subroutine, you can scale them up or
down (since they’re all loaded with the @IMGSCALABLE property).

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 102

rem Jigsaw1

DEF win:WINDOW

DEF bitmapz[6]:INT
def bitmap1,bitmap2:INT
def cellbmp[2,3]:INT

DEF i,j,k,i1,j1,i2,j2,k1,k2,mi,mj,count:INT
DEF x,y,w,h:INT
DEF xx,hi,hj,answer:INT
DEF path$,null$:STRING

path$ = GETSTARTPATH
bitmapz[0] = LoadImage (path$+"scen000.bmp",@IMGSCALABLE)
bitmapz[1] = LoadImage (path$+"scen001.bmp",@IMGSCALABLE)
bitmapz[2] = LoadImage (path$+"scen002.bmp",@IMGSCALABLE)
bitmapz[3] = LoadImage (path$+"scen003.bmp",@IMGSCALABLE)
bitmapz[4] = LoadImage (path$+"scen004.bmp",@IMGSCALABLE)
bitmapz[5] = LoadImage (path$+"scen005.bmp",@IMGSCALABLE)

WINDOW win,0,0,450,340,@CAPTION|@SYSMENU,0,"Jigsaw",mainwindow
menu win,"T,&Jigsaw,0,0","I,Quit,0,3"
insertmenu win,1,"T,&Help,0,0","I,Contents,0,11","I,About,0,12"

icon1 = LoadImage (path$+"pc4.ico",@IMGICON)
seticon win,icon1

gosub initialize

’ build jigsaw window
 k = 5
 for i = 0 to 1
 for j = 0 to 2
 x = j * w
 y = i * h
 showimage win,bitmapz[k],@IMGSCALABLE,x,y,w,h
 cellbmp[i,j] = k
 k = k - 1
 next j
 next i

run=1

waituntil run=0
closewindow win

end

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 103

mainwindow:
select @CLASS
 CASE @IDCLOSEWINDOW
 for i = 0 to 5
 deleteimage bitmapz[i],@IMGSCALABLE
 next i
 run=0

 CASE @IDCREATE
 CENTERWINDOW win

 case @IDMENUPICK
 select @MENUNUM
 case 3
 for i = 0 to 5
 deleteimage bitmapz[i],@IMGSCALABLE
 next i
 run = 0
 case 11
 showwindow win,@SWHIDE
 answer = domodal d1
 showwindow win,@SWRESTORE
 case 12
 messagebox win,"This is an example of a simple jigsaw puzzle
game","Jigsaw",64
 endselect

 CASE @IDLBUTTONDN
 mi = @mousey
 mj = @mousex
 i = ceil(mi / h)-1
 j = ceil(mj / w)-1

 ’ make sure that the mouse position is within the puzzle border
 if (i>=0) & (i<=1) & (j>=0) & (j<=2)
 count = count + 1
 ’ if count = 1 this is the piece to be moved -- if count = 2 (2nd
click) then this is the square to be switched
 ’ with the first piece clicked on.
 if count = 1
 i1 = i: j1 = j
 endif
 if count = 2
 i2 = i: j2 = j
 k1 = cellbmp[i1,j1]
 k2 = cellbmp[i,j]
 cellbmp[i1,j1] = k2
 cellbmp[i,j] = k1

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 104

 x = j1 * w
 y = i1 * h
 showimage win,bitmapz[k2],@IMGSCALABLE,x,y,w,h
 x = j * w
 y = i * h
 showimage win,bitmapz[k1],@IMGSCALABLE,x,y,w,h
 count = 0
 endif
 endif

endselect
return

SUB initialize
 w = 150
 h = 150
 rmax = 2
 cmax = 3
 i = -1
 j = -1
RETURN

After messing with this for a little while, I decided that I wanted to create something a little more
like a real jigsaw puzzle program, where you can slide the pieces around freely within a window
and assemble them that way. The major problem with this approach is that you need to be able
to create a visible trail while you’re moving a puzzle piece so that you can tell where it is as
you’re moving it into the position you want. The simplest way to do this (once you’ve
determined which piece has been clicked on) is to keep doing a "showimage" instruction at each
point as you drag the mouse along. Once you "drop" the piece (let up on the mouse key) you can
redraw the updated window. However, while you’re dragging the puzzle piece, the screen gets
rather messy with the trail of images of the piece being moved (see below).

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 105

After a little experimenting with different ideas (all of which failed miserably) I finally decided
to try converting "jigsaw.iba" to a DirectX program (screen shot below):

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 106

This version works pretty well as far as simulating true drag and drop moving of images. And
(most important for me, since I’m easily confused) the coding for this turned out to be pretty
simple and straightforward:

REM Jigsaw 3
REM REQUIRES DIRECTX 7.0 OR GREATER

IF GETDXVERSION < 7
 MESSAGEBOX 0,"This program requires" + chr$(13) + "DirectX 7.0 or
greater","Error"
 END
ENDIF

DEF win:WINDOW
DEF state,imageno,drag,w,h,x,y,x1,y1,x2,y2,mi,mj,i,j,k:INT
DEF path$:STRING
DEF spr[7]:INT
DEF pic[7]:STRING
def bmploc[7,2]:INT

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 107

WINDOW win,0,0,640,480,@NOAUTODRAW,0,"Jigsaw 3",mainwindow
IF CREATESCREEN(win,640,480) < 0
 MESSAGEBOX win, "Could not create DirectX screen","Error"
 CLOSEWINDOW win
 END
ENDIF

’ load the sprite images into the pic array
path$ = GETSTARTPATH
pic[1] = path$+"scen000.bmp"
pic[2] = path$+"scen004.bmp"
pic[3] = path$+"scen002.bmp"
pic[4] = path$+"scen001.bmp"
pic[5] = path$+"scen005.bmp"
pic[6] = path$+"scen003.bmp"

’load the sprite(s)
spr[1] = DXSPRITE(win,pic[1],150,150,1)
spr[2] = DXSPRITE(win,pic[2],150,150,1)
spr[3] = DXSPRITE(win,pic[3],150,150,1)
spr[4] = DXSPRITE(win,pic[4],150,150,1)
spr[5] = DXSPRITE(win,pic[5],150,150,1)
spr[6] = DXSPRITE(win,pic[6],150,150,1)

gosub initialize

’ build jigsaw window
x = 0: y = 0
for k = 1 to 6
 DXSETSPRITEDATA spr[k],@SDXPOS,x
 DXSETSPRITEDATA spr[k],@SDYPOS,y
 bmploc[k,0] = x: bmploc[k,1] = y
 x = x + 25: y = y + 25
next k
’DXFLIP win

state = 0

run = 1
WAITUNTIL run = 0
CLOSEWINDOW win
END

mainwindow:
SELECT @CLASS
 CASE @IDLBUTTONDN
 ’ find the puzzle piece that’s just been clicked on (routine
"pickbmp")

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 108

 drag = 1
 mi = @mousey
 mj = @mousex
 gosub pickbmp
 x2 = mj: y2 = mi

 CASE @IDMOUSEMOVE
 ’ if "drag" = 1 (that is, a piece was clicked on and is being dragged)
then calculate the new x and y
 ’ coordinates of that piece and move it to the new location
 if drag = 1
 if (imageno > 0) & (imageno < 7)
 mi = @mousey: mj = @mousex
 mi = mi - (w/2)
 mj = mj - (h/2)
 x1 = mj: y1 = mi
 if (abs(x1-x2) >= 0) | (abs(y1-y2) >= 0)
 bmploc[imageno,0] = mj: bmploc[imageno,1] = mi
 DXSETSPRITEDATA(spr[imageno],@SDXPOS,mj)
 DXSETSPRITEDATA(spr[imageno],@SDYPOS,mi)
 DXMOVESPRITE spr[imageno],mj,mi
 x2 = x1: y2 = y1
 endif
 endif
 endif

 CASE @IDLBUTTONUP
 ’ if "drag" = 1 (that is, a piece was clicked on and has been
dragged) then update the location of that piece
 if drag = 1
 if (imageno > 0) & (imageno < 7)
 mi = @mousey: mi = mi - (w/2)
 mj = @mousex: mj = mj - (h/2)
 bmploc[imageno,0] = mj: bmploc[imageno,1] = mi
 drag = 0
 endif
 endif

 CASE @IDDXUPDATE
 if state = 0 then gosub update1
 if state = 1 then gosub update2

 CASE @IDCLOSEWINDOW
 run = 0
ENDSELECT
RETURN

SUB initialize
 ’ set puzzle piece width and height to 150

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 109

 w = 150
 h = 150
 imageno = -1
 drag = 0
RETURN

SUB pickbmp
 ’ find out which puzzle piece was clicked on (compare the click
coordinates with the individual piece coordinates),
 ’ and set imageno to the index number for that piece
 imageno = -1
 k = 6
 for i = 1 to 6
 x1 = bmploc[k,0]
 y1 = bmploc[k,1]
 x2 = bmploc[k,0] + w
 y2 = bmploc[k,1] + h
 if (mj >= x1) & (mj <= x2) & (mi >= y1) & (mi <= y2)
 imageno = k
 i = 6
 endif
 k = k - 1
 next i
RETURN

SUB update1
 ’ execute one time only, to draw the sprites (puzzle pieces) initially,
then set "state" to 1
 DXFILL win,RGB(0,0,255)
 DXFLIP win
 state = 1
 for k = 1 to 6
 DXDRAWSPRITE win,spr[k]
 next k
 DXFLIP win
RETURN

SUB update2
 ’ if a puzzle piece is selected (imageno <> -1) redraw all background and
all the pieces
 if imageno <> -1
 DXFILL win,RGB(0,0,255)
 for k = 1 to 6
 DXDRAWSPRITE win,spr[k]
 next k
 endif
 DXFLIP win,0,0
RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 110

Incidentally, if anyone is wondering why I didn’t just use Tony’s "drag bitmap" routine (which
allows you to drag and drop a bitmap using Win API calls), I would have but (as Tony pointed
out) if you have overlapping images you wind up with "artifacts" or chunks of images left on the
screen.

At any rate, the next challenge in creating a real jigsaw program would be to figure out how to
handle irregularly shaped pieces -- if I manage that, I’ll post an update on the forum. In the
meantime, if anyone would like to see a really nice example of a jigsaw program, you might take
a look at http://www.adcsoft.com/bjigsaw.html and try the shareware trial version.

Late Jigsaw Update - Irregularity Achieved!

With a little help (actually a lot of help) from my younger daughter, I managed to put together a
modified version of the Jigsaw program that handles irregular sized pieces:

http://www.adcsoft.com/bjigsaw.html

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 111

The puzzle pieces were created in Adobe Photoshop by dividing the original image and putting each piece
on a rectangular background with an RBG color of 241,3,244. Then I modified the Jigsaw program by
loading the width and height of each puzzle piece and specifying a transparency color for each sprite of
241,3,24 so the rectangular backgrounds don’t show.

REM Jigsaw 4
REM Author: Paul Love
REM REQUIRES DIRECTX 7.0 OR GREATER

IF GETDXVERSION < 7
 MESSAGEBOX 0,"This program requires" + chr$(13) + "DirectX 7.0 or
greater","Error"
 END
ENDIF

DEF win:WINDOW
DEF state,imageno,drag,w,h,x,y,x1,y1,x2,y2,mi,mj,i,j,k:INT
DEF path$:STRING

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 112

DEF spr[7]:INT
DEF pic[7]:STRING
def bitmapz[7]:INT
def bmploc[7,2]:INT
def bmpwh[7,2]:INT

WINDOW win,0,0,640,480,@NOAUTODRAW,0,"Jigsaw 4",mainwindow
IF CREATESCREEN(win,640,480) < 0
 MESSAGEBOX win, "Could not create DirectX screen","Error"
 CLOSEWINDOW win
 END
ENDIF

’ load the sprites
path$ = GETSTARTPATH
pic[1] = path$+"parrot1.bmp"
pic[2] = path$+"parrot2.bmp"
pic[3] = path$+"parrot3.bmp"
pic[4] = path$+"parrot4.bmp"
pic[5] = path$+"parrot5.bmp"
pic[6] = path$+"parrot6.bmp"

bitmapz[1] = LoadImage (pic[1],@IMGBITMAP)
bitmapz[2] = LoadImage (pic[2],@IMGBITMAP)
bitmapz[3] = LoadImage (pic[3],@IMGBITMAP)
bitmapz[4] = LoadImage (pic[4],@IMGBITMAP)
bitmapz[5] = LoadImage (pic[5],@IMGBITMAP)
bitmapz[6] = LoadImage (pic[6],@IMGBITMAP)

GetBitmapSize (bitmapz[1],w,h)
bmpwh[1,0] = w: bmpwh[1,1] = h
GetBitmapSize (bitmapz[2],w,h)
bmpwh[2,0] = w: bmpwh[2,1] = h
GetBitmapSize (bitmapz[3],w,h)
bmpwh[3,0] = w: bmpwh[3,1] = h
GetBitmapSize (bitmapz[4],w,h)
bmpwh[4,0] = w: bmpwh[4,1] = h
GetBitmapSize (bitmapz[5],w,h)
bmpwh[5,0] = w: bmpwh[5,1] = h
GetBitmapSize (bitmapz[6],w,h)
bmpwh[6,0] = w: bmpwh[6,1] = h

’load the sprite(s)
spr[1] = DXSPRITE(win,pic[1],bmpwh[1,0],bmpwh[1,1],1,RGB(242,3,244))
spr[2] = DXSPRITE(win,pic[2],bmpwh[2,0],bmpwh[2,1],1,RGB(242,3,244))
spr[3] = DXSPRITE(win,pic[3],bmpwh[3,0],bmpwh[3,1],1,RGB(242,3,244))
spr[4] = DXSPRITE(win,pic[4],bmpwh[4,0],bmpwh[4,1],1,RGB(242,3,244))
spr[5] = DXSPRITE(win,pic[5],bmpwh[5,0],bmpwh[5,1],1,RGB(242,3,244))
spr[6] = DXSPRITE(win,pic[6],bmpwh[6,0],bmpwh[6,1],1,RGB(242,3,244))

gosub initialize

’ build jigsaw window
x = 0: y = 0
for k = 1 to 6
 DXSETSPRITEDATA spr[k],@SDXPOS,x

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 113

 DXSETSPRITEDATA spr[k],@SDYPOS,y
 bmploc[k,0] = x: bmploc[k,1] = y
 x = x + 25: y = y + 25
next k
’DXFLIP win

state = 0

run = 1
WAITUNTIL run = 0
CLOSEWINDOW win
END

mainwindow:
SELECT @CLASS
 CASE @IDLBUTTONDN
 drag = 1
 mi = @mousey
 mj = @mousex
 ’i = ceil(mi / h)-1
 ’j = ceil(mj / w)-1
 gosub pickbmp
 x2 = mj: y2 = mi

 CASE @IDMOUSEMOVE
 if drag = 1
 if (imageno > 0) & (imageno < 7)
 mi = @mousey: mj = @mousex
 mi = mi - (w/2)
 mj = mj - (h/2)
 x1 = mj: y1 = mi
 if (abs(x1-x2) >= 0) | (abs(y1-y2) >= 0)
 bmploc[imageno,0] = mj: bmploc[imageno,1] = mi
 DXSETSPRITEDATA(spr[imageno],@SDXPOS,mj)
 DXSETSPRITEDATA(spr[imageno],@SDYPOS,mi)
 DXMOVESPRITE spr[imageno],mj,mi
 x2 = x1: y2 = y1
 endif
 endif
 endif

 CASE @IDLBUTTONUP
 if drag = 1
 if (imageno > 0) & (imageno < 7)
 mi = @mousey
 mi = mi - (w/2)
 mj = @mousex
 mj = mj - (h/2)
 bmploc[imageno,0] = mj: bmploc[imageno,1] = mi
 drag = 0
 endif
 endif

 CASE @IDDXUPDATE
 if state = 0 then gosub update1
 if state = 1 then gosub update2

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 114

 CASE @IDCLOSEWINDOW
 run = 0
ENDSELECT
RETURN

SUB initialize
 ’w = 150
 ’h = 150
 imageno = -1
 drag = 0
RETURN

SUB pickbmp
 imageno = -1
 k = 6
 for i = 1 to 6
 x1 = bmploc[k,0]
 y1 = bmploc[k,1]
 w = bmpwh[k,0]: h = bmpwh[k,1]
 x2 = bmploc[k,0] + w
 y2 = bmploc[k,1] + h
 if (mj >= x1) & (mj <= x2) & (mi >= y1) & (mi <= y2)
 imageno = k
 i = 6
 endif
 k = k - 1
 next i
RETURN

SUB update1
 DXFILL win,RGB(0,0,255)
 DXFLIP win
 state = 1
 for k = 1 to 6
 DXDRAWSPRITE win,spr[k]
 next k
 DXFLIP win
RETURN

SUB update2
 if imageno <> -1
 DXFILL win,RGB(0,0,255)
 for k = 1 to 6
 DXDRAWSPRITE win,spr[k]
 next k
 endif
 DXFLIP win,0,0
RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 115

Freeware Reviews

Review: Inno Setup (Jordan Russell, http://www.innosetup.com)
(Used and reviewed by Jerry Muelver)

Inno Setup packages your software project into a standalone installation program.

It’s incredible that this remarkable program is freeware. Inno Setup does everything the Big
Expensive Installation Software does, quickly, easily, and with almost no fuss. The program
steps you through the process of setting up your application with all its support files into a simple
command script. Then Inno runs the script and builds a single-file EXE that provides
professional-quality installation for your dream project.

Inno’s documentation is detailed, helpful, and well written. With Inno around, there’s no longer
any excuse for packing your project as loose files in a Zip archive with nothing but a README
to guide your users through installation.

Review: CS-RCS Basic (ComponentSoftware Inc.)
http://www.componentsoftware.com/Products/RCS/
Reviewed by Tony Jones

CS-RCS Basic is a Revision Control System by ComponentSoftware, Inc. They offer two
versions, a Basic version, which is free and a Pro version. But don’t let the Basic title fool you.
This is one nice piece of software. CS-RCS allows you to backup your source code and to return
to any revision of it, with just the click of a mouse button. Backing up your IBasic source is as
simple as right clicking the file in Windows Explorer and choosing Add to RCS from the pop-up
menu. Once a file is added to CS-RCS, you can then view the Revision History, compare the
differences between two revisions, check-in a new version or check out an older version.

This is really an amazing piece of software that will save you many headaches and late nights. If
you value your source code and want to protect it you can’t beat CS-RCS.

http://www.innosetup.com/
http://www.componentsoftware.com/Products/RCS/

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 116

Re-Sizing Windows To Fit The Screen

By

Graham Sutton

When you write a program, you put a lot of effort into making the screen layout attractive to the
user. Controls, images and text are positioned carefully, fonts, and colors chosen for best effect.

You distribute your program, and users load it on to their machine and run it … . Oh dear! What
has happened to your neat layout? The window probably appears much smaller in the top left
corner of the screen. If the user tries to enlarge the window by dragging the border, the window
size increases, but all the controls remain in place and their size remains the same.

The problem occurs whenever the user’ s screen resolution differs from yours. If their screen is
running at 1600x1200, and you designed your program for 800x600 resolution, the window will
only fill a quarter of the screen. If the user is running at 640x480 pixels, the window will be far
too large to fit on the screen.

So the first problem is how to build an automatic adjustment into your code, so that windows
will appear the same whatever the screen resolution.

The second, related problem is how to respond if the user drags the window borders to alter the
size.

A solution is suggested that requires a slightly different way of thinking about the location of
controls on the screen. Instead of absolute locations, such as so many pixels from the left, so
many from the top etc. - use Proportional locations and sizes.

For example, if you are designing a button to be 80 pixels wide and 60 pixels high at 800x600,
specify this as 0.1 wide and 0.06 high, as proportions of window size. Then, whatever the
number of pixels on screen, the control will appear proportionally the same size.

If the window is reduced in size, you can then arrange for a SETSIZE instruction to re-size all
controls to remain in correct proportional size and location. A SETFONT instruction can
similarly adjust the font sizes.

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 117

The example program shows how this is done, using a size control arrays[] which holds the
locations and sizes of the controls in proportional form. The array has records of user type
‘resize’ .

If the window is re-sized by dragging, a message is sent to the handler subroutine for the
window, which is intercepted by a CASE @idsize statement.

It is not possible to issue a SETSIZE intruction immediately, since this will generate another
@idsize message, which will issue another SETSIZE, which will issue another @idsize message
.. and so on – the program will lock up.

So it is necessary to do the SETSIZE somewhere else. The easiest way seems to be to start a
timer, and deal with the SETSIZE inside a CASE @idtimer section. This also has the advantage
that the re-size operation can be timed to take place several milliseconds after the ‘drag’
operation is hopefully finished. The timer is then stopped, and there is no efficiency hit on the
program until another re-size occurs.

If your program uses several windows, it will be necessary to use a separate size control array for
the controls in each window, the re-sizing being done in the handler routine for the appropriate
window.

Some elements of a program, such as images and fixed screen text, are not controls, so they
cannot be dealt with within the control re-sizing loop. Each of these will need to be re-sized
individually.

One other small point – if Fonts are adjusted proportionally with the controls, text will rapidly
become unreadable. A suggestion is to adjust the fonts by the Square Root of the size-adjusting
factor. This means that text will remain readable down to much smaller sizes of the window, and
with care, will not overflow the control borders.

The example program window should remain the same size on the screen at all resolutions, and
the screen layout should stay the same whatever size (within reason) the window is set to. Text
should remain readable down to about 25% of original size.

def w1:window
def sW,sH,dW,dH,run,i,im:int
def sm,w1W,w1H,sf,sfH,sfW:float
def wL,wT,wW,wH:int
def iL,iT,iW,iH:float
def tL,tT:float
def tW,tH:int
def intro:string

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 118

def ncontrols:int

autodefine "off"

’ layout definitions used to re-size components ...
type resize
 def l:float
 def t:float
 def w:float
 def h:float
 def font:string
 def fontsize:int
 def fontbold:int
endtype

’ specify how many controls need to be re-sized ...
ncontrols=3

’ array holding resize information for each component ...
def s[ncontrols+1]:resize

dW = 800:dH = 600:’ design screen area ...
getscreensize sW,sH:’ determine current screen size ...

sm = sW/dW: ’ calculate screensize multiplier ...

w1W=0.8:w1H=0.8:’ set window proportion of screen width ...

’ adjust window sizes to match the screen setting ...
w1W = sm * dW * w1W : w1H = sm * dH * w1H

WINDOW w1,0,0,w1W,w1H,@MINBOX|@MAXBOX|@SIZE,0,"ScreenSize Test Main
Window",mainwindow
setwindowcolor w1,rgb(0,0,80):’ set background colour to dark blue ...

GETSIZE w1,wL,wT,wW,wH:’ establish window position and size ...
sf = wH/dH :’ calculate the scaling factor

’ create a button ...
’ the button will be centered so the left position is not needed ..
’ define button size (as proportion of screen size)...
s[1].t=0.783:s[1].w=0.14:s[1].h=0.08
s[1].l=(1-s[1].w)/2: ’ this button will be centered ...
s[1].font="Arial":s[1].fontsize=12:s[1].fontbold=700
control w1,"B,Exit,(1-s[1].w)/2*wW, s[1].t*wH, s[1].w*wW, s[1].h*wH,0,1"
SETFONT w1, s[1].font, sf*s[1].fontsize, s[1].fontbold,0,1

’ load your own jpeg image, size around 400x300 pixels ...
im = LoadImage(getstartpath+"seahorse.jpg",@IMGSCALABLE)

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 119

iW=0.5:iH=0.5 :’ set image design size as proportion of screen size ...
iT=0.083:’ set top of image - left is not needed because it will be centered
..
SHOWIMAGE w1,im,@IMGSCALABLE, (1 - iw)/2*wW, iT*wH, iW*wW, iH*wH

’ set up some fixed text ...
intro="Screen Resize":’ set intro text ..
SETFONT w1, "Arial", sf*40,700, @SFITALIC
GETTEXTSIZE w1, intro, tW, tH
tT=0.15
move w1, (wW-tW)/2, tT*wH
frontpen w1, RGB(100,100,255):’ set text color to light blue ...
drawmode w1,@TRANSPARENT
PRINT w1,intro

’ create an edit box ...
s[2].l=0.1:s[2].t=0.65:s[2].w=0.2:s[2].h=0.05
s[2].font="Arial":s[2].fontsize=12:s[2].fontbold=500
CONTROL w1,"E,,s[2].l*wW,s[2].t*wH,s[2].w*wW,s[2].h*wH,@cteditcenter,2"
SETFONT w1, s[2].font, sqrt(sf)*s[2].fontsize, s[2].fontbold,0,2
setcontroltext w1,2,"Edit Box"

’ create a text box ...
s[3].l=0.65:s[3].t=0.65:s[3].w=0.25:s[3].h=0.05
s[3].font="Times New Roman":s[3].fontsize=14:s[3].fontbold=500
CONTROL w1,"T,,s[3].l*wW,s[3].t*wH,s[3].w*wW,s[3].h*wH,@cteditcenter,3"
SETFONT w1, s[3].font, sqrt(sf)*s[3].fontsize, s[3].fontbold,0,3
setcontroltext w1,3,"Text Box"

run = 1
waituntil run = 0

DeleteImage im,@IMGSCALABLE

closewindow w1
end

’ the window message processing routine ...
mainwindow:
select @CLASS
 case @IDCLOSEWINDOW
 run = 0
 case @IDCONTROL
 select @controlid
 case 1
 run = 0

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 120

 endselect
 case @IDCHAR
 ’ pressing ’ESC’ will abort the program ...
 Key = @CODE
 if Key=27 then run=0
 case @idsize
 starttimer w1,100
 setwindowcolor w1,rgb(0,0,80):’ re-set background ..
 GETCLIENTSIZE w1,wL,wT,wW,wH:’ establish new window position and
size ...
 sfH = wH/dH: ’ calculate the new scaling factor
 sfW = wW/dW
 if sfH<sfW
 sf=sfH
 else
 sf=sfW
 endif
 case @idtimer
’ re-size all controls ...
 for i = 1 to ncontrols
 SETSIZE w1,s[i].l*wW, s[i].t*wH, s[i].w*wW, s[i].h*wH,i:’
re-size the controls ...
 SETFONT w1, s[i].font, sf*s[i].fontsize, s[i].fontbold,0,i:
’ adjust the control font ...
 next i
’ re-size the image ...
 SHOWIMAGE w1,im,@IMGSCALABLE, (1 - iw)/2*wW, iT*wH, iW*wW,
iH*wH:’ redo the image ...
’ re-size any fixed text ...
 SETFONT w1, "Arial", sf*40,700, @SFITALIC: ’ resize screen font
...
 GETTEXTSIZE w1, intro, tW, tH
 move w1, (wW-tW)/2, tT*wH
 PRINT w1,intro
 stoptimer w1
endselect
return

A Christmas Puzzle For You
There is a hidden puzzle in that program, which folks might not stumble across. It could (being
Christmas) form the basis of a fun puzzle - I don’t know the answer - but I would buy a nice
bottle of wine for whoever could solve it.

Below is the same program with a number of puzzle test steps.

Step 1 is to disable the control re-sizing command in the @idtimer FOR loop.
If you run the program then, of course the controls are not re-sized when you drag

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 121

the window borders.

Step 2 is to insert the SETSIZE w1,10,10,400,300 command in the @idsize section.
Resize2.iba is set up like this. If you run this one, the window is re-sized - AND the controls
appear to be AUTOMATICALLY re-sized.
But this is the puzzle - how on earth does it work - it shouldn’t - the SETSIZE should
issue another @idsize message, which should cause the program to go into a tight loop.

(The importance is, if a SETSIZE on the whole window automatically re-sizes the
controls, it would save a whole lot of programming. Only the fonts would need to be dealt with).

Step 3 is to try the SETSIZE w1,wL,wT,wW,wH command, using variables, in the
@idtimer section - where it should work - but it doesn’t.

Step 5 is to try the constant re-size SETSIZE w1,10,10,400,300 - which worked in the
@idsize section - down in the @idtimer section. Now it doesn’t work!

I’ve been unable to solve this puzzle. Obviously under certain circumstances, a whole
window re-size will resize all controls as well - but how to get it to work reliably?

I’ll be happy to send a cheque for whatever a decent bottle of wine costs in the US,
as a prize for whoever solves the puzzle.

All the best,

Graham

’ Resize2.iba

def w1:window
def sW,sH,dW,dH,run,i,im:int
def sm,w1W,w1H,sf,sfH,sfW:float
def wL,wT,wW,wH:int
def iL,iT,iW,iH:float
def tL,tT:float
def tW,tH:int
def intro:string
def ncontrols:int

autodefine "off"

’ layout definitions used to re-size components ...
type resize

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 122

 def l:float
 def t:float
 def w:float
 def h:float
 def font:string
 def fontsize:int
 def fontbold:int
endtype

’ specify how many controls need to be re-sized ...
ncontrols=3

’ array holding resize information for each component ...
def s[ncontrols+1]:resize

dW = 800:dH = 600:’ design screen area ...
getscreensize sW,sH:’ determine current screen size ...

sm = sW/dW: ’ calculate screensize multiplier ...

w1W=0.8:w1H=0.8:’ set window proportion of screen width ...

’ adjust window sizes to match the screen setting ...
w1W = sm * dW * w1W : w1H = sm * dH * w1H

WINDOW w1,0,0,w1W,w1H,@MINBOX|@MAXBOX|@SIZE,0,"ScreenSize Test Main
Window",mainwindow
setwindowcolor w1,rgb(0,0,80):’ set background colour to dark blue ...

GETSIZE w1,wL,wT,wW,wH:’ establish window position and size ...
sf = wH/dH :’ calculate the scaling factor

’ create a button ...
’ the button will be centered so the left position is not needed ..
’ define button size (as proportion of screen size)...
s[1].t=0.783:s[1].w=0.14:s[1].h=0.08
s[1].l=(1-s[1].w)/2: ’ this button will be centered ...
s[1].font="Arial":s[1].fontsize=12:s[1].fontbold=700
control w1,"B,Exit,(1-s[1].w)/2*wW, s[1].t*wH, s[1].w*wW, s[1].h*wH,0,1"
SETFONT w1, s[1].font, sf*s[1].fontsize, s[1].fontbold,0,1

’ load your own jpeg image, size around 400x300 pixels ...
im = LoadImage(getstartpath+"seahorse.jpg",@IMGSCALABLE)

iW=0.5:iH=0.5 :’ set image design size as proportion of screen size ...
iT=0.083:’ set top of image - left is not needed because it will be centered
..
SHOWIMAGE w1,im,@IMGSCALABLE, (1 - iw)/2*wW, iT*wH, iW*wW, iH*wH

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 123

’ set up some fixed text ...
intro="Screen Resize":’ set intro text ..
SETFONT w1, "Arial", sf*40,700, @SFITALIC
GETTEXTSIZE w1, intro, tW, tH
tT=0.15
move w1, (wW-tW)/2, tT*wH
frontpen w1, RGB(100,100,255):’ set text color to light blue ...
drawmode w1,@TRANSPARENT
PRINT w1,intro

’ create an edit box ...
s[2].l=0.1:s[2].t=0.65:s[2].w=0.2:s[2].h=0.05
s[2].font="Arial":s[2].fontsize=12:s[2].fontbold=500
CONTROL w1,"E,,s[2].l*wW,s[2].t*wH,s[2].w*wW,s[2].h*wH,@cteditcenter,2"
SETFONT w1, s[2].font, sqrt(sf)*s[2].fontsize, s[2].fontbold,0,2
setcontroltext w1,2,"Edit Box"

’ create a text box ...
s[3].l=0.65:s[3].t=0.65:s[3].w=0.25:s[3].h=0.05
s[3].font="Times New Roman":s[3].fontsize=14:s[3].fontbold=500
CONTROL w1,"T,,s[3].l*wW,s[3].t*wH,s[3].w*wW,s[3].h*wH,@cteditcenter,3"
SETFONT w1, s[3].font, sqrt(sf)*s[3].fontsize, s[3].fontbold,0,3
setcontroltext w1,3,"Text Box"

run = 1
waituntil run = 0

DeleteImage im,@IMGSCALABLE

closewindow w1
end

’ the window message processing routine ...
mainwindow:
select @CLASS
 case @IDCLOSEWINDOW
 run = 0
 case @IDCONTROL
 select @controlid
 case 1
 run = 0
 endselect
 case @IDCHAR
 ’ pressing ’ESC’ will abort the program ...
 Key = @CODE
 if Key=27 then run=0
 case @idsize

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 124

 starttimer w1,100
 setwindowcolor w1,rgb(0,0,80):’ re-set background ..
 GETCLIENTSIZE w1,wL,wT,wW,wH:’ establish new window position and
size ...

’***
’ Puzzle Step 2: How does this manage to automatically re-size controls?
’ when it shouldn’t really work at all in this position.
’ Notice fixed values are used for re-sizing the whole window ...
’***
 SETSIZE w1,10,10,400,300
’***

 sfH = wH/dH: ’ calculate the new scaling factor
 sfW = wW/dW
 if sfH<sfW
 sf=sfH
 else
 sf=sfW
 endif
 case @idtimer
’ re-size all controls ...
 for i = 1 to ncontrols

’***
’ Puzzle Step 1: Comment out the following Control Re-Size command
’***
’ SETSIZE w1,s[i].l*wW, s[i].t*wH, s[i].w*wW, s[i].h*wH,i:’
re-size the controls ...
’**

 SETFONT w1, s[i].font, sf*s[i].fontsize, s[i].fontbold,0,i:
’ adjust the control font ...

 next i

’***
’ Puzzle Step 3: And so why doesn’t this work with variable values?
’***
’ SETSIZE w1,wL,wT,wW,wH

’ Puzzle Step 4: and neither does this in this position
’***
’ SETSIZE w1,10,10,400,300
’***

’ re-size the image ...
 SHOWIMAGE w1,im,@IMGSCALABLE, (1 - iw)/2*wW, iT*wH, iW*wW,
iH*wH:’ redo the image ...

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 125

’ re-size any fixed text ...
 SETFONT w1, "Arial", sf*40,700, @SFITALIC: ’ resize screen font
...
 GETTEXTSIZE w1, intro, tW, tH
 move w1, (wW-tW)/2, tT*wH
 PRINT w1,intro
 stoptimer w1
endselect
return

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 126

Christmas Greetings

 ’Tis the season to be joyous and celebrate with our families and friends and share laughter
and good times. And, as Paul said in his column, the IBasic community has grown into one big
extended family. A few members of this "extended family" decided to send their holiday
greetings in the form of IBasic programs as listed below. To send your own greeting, please visit
the following thread on the IBasic forums; www.pyxia.com/community/viewtopic.php?t=4990

Happy holidays all, enjoy! - Editor

’ Merry Christmas all
’ From RICK_LETT and family
’ Have a joyous Christmas

DEF w1:WINDOW
DECLARE "kernel32",Sleep(dwMilliseconds:INT),INT
WINDOW w1,0,0,350,350,@MINBOX|@SIZE,0,"Merry Christmas",main
setfont w1,"papyrus",30,200,@sfitalic

frontpen w1,rgb(0,255,0)
setwindowcolor w1,rgb(0,0,0)
print w1 ," PEACE"
rect w1,130,150,50,170,rgb(0,0,0),rgb(255,255,255)
starttimer w1,1

WAITUNTIL w1 = 0
END

SUB main
 select @CLASS
 case @IDCLOSEWINDOW

 stoptimer w1
 CLOSEWINDOW w1
 case @idtimer
 flik = rnd(40)-25

 ellipse w1,147,130,12,flik,rgb(255,180,0),rgb(255,180,0)
 sleep(18)
 ellipse w1,147,125,12,flik,rgb(255,170,0),rgb(255,130,0)
endselect
RETURN

’ Christmas tree
’ By LarryA
DEF w:WINDOW
DEF rise, rad, frad, xshorten:float

http://www.pyxia.com/community/viewtopic.php?t=4990

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 127

DEF left, top, width, height, bpx, bpy, tpx, tpy:int
DEF x1, y1, x2, y2:int
WINDOW w, 20, 5, 440, 460, @caption, 0, "Merry Christmas", main
setwindowcolor w, rgb(255,235,190)
brown=rgb(130, 100, 0)
green=rgb(0, 80+rnd(40), 0)
’== GROW ===================
bpx=220 : bpy=410 : tpx=bpx
for aa=-4 to 4
 line w, bpx+aa, bpy, bpx, bpy-390, brown
next aa
rad=160: tpy=bpy-40
for ht=1 to 40
 for xs=-100 to 100 #40
 xshorten=xs/100
 rise=rnd(.3)
 line w, tpx, tpy, tpx+(xshorten*rad), tpy-rise*rad, rgb(0,80+rnd(40),0)
 for aa=1 to 30
 frad=rnd(.9)*rad
 x1=tpx+(xshorten*frad)
 y1=tpy-rise*frad
 x2=tpx+xshorten*(frad+rad/5)
 y2=tpy-rise*frad+(-rise+(rnd(.8)-.4))*(rad/5)
 line w, x1, y1, x2, y2, rgb(0, 80+rnd(40), 0)
 wait 1
 next aa
 next xs
 rad=rad-4 : tpy=tpy-9
next ht
’== DECORATE ======================
rad=160 : tpy=bpy-50
for ht=1 to 37
 circle w, tpx+rnd(2*rad)-rad, tpy+rnd(6)-3, 5, rgb(255,0,0),rgb(255,0,0)
 rad=rad-4 : tpy=tpy-9
next ht
’== DRAW BORDER ===========================
getclientsize w,left,top,width,height
setlinestyle w, @lssolid, 3
rect w, left+2, top+2, width-4, height-4, rgb(255,0,0)
rect w, left+5, top+5, width-10, height-10, rgb(0,120,0)
rect w, left+8, top+8, width-16, height-16, rgb(0,120,0)
rect w, left+11, top+11, width-22, height-22, rgb(255,0,0)
’== GREETING ==============================
setfont w, "times", 14, 700, @sfitalic
frontpen w, rgb(0,120,0)
move w, left+30, top+20 : print w, "Merry"
move w, left+20, top+50 : print w, "Christmas"

run = 1: WAITUNTIL run = 0: CLOSEWINDOW w: END

SUB main
SELECT @CLASS
 CASE @IDCLOSEWINDOW
 run = 0
ENDSELECT
RETURN

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 128

’ Snow By Jolly_Roger
openconsole
locate 23,1
print "Press Q to exit"
color 15,9
DECLARE "kernel32",GetTickCount(),int
def sfx[31],sfy[31],snflky,snflkx,r:int
def ch1,ch2,ch3,ch4,ch5,bgimage[22],spcs22,blankline,bckbuffer[22]:string
’set up snowflake initial positions
for snowflake=1 to 30
 sfx[snowflake]=1+rnd(79)
 sfy[snowflake]=-rnd(20)
next snowflake
’set up initial background image
ch1=chr$(255):ch2=ch1+ch1:ch3=ch2+ch1:ch4=ch2+ch2:ch5=ch2+ch3
spcs22=" "
blankline=spcs22+spcs22+spcs22+" "
bgimage[8]=spcs22+ch4+" "+ch5+" "+ch3+" "+ch4+" "+ch5+" "+spcs22
bgimage[9]=spcs22+ch1+" "+ch1+" "+ch1+" "+ch1+" "
bgimage[9]=bgimage[9]+ch1+" "+ch1+" "+ch1+" "+spcs22
bgimage[10]=spcs22+ch1+" "+ch1+" "+ch1+" "+ch1+" "
bgimage[10]=bgimage[10]+ch1+" "+ch1+" "+ch1+" "+spcs22
bgimage[11]=spcs22+ch4+" "+ch5+" "+ch5+" "+ch1+" "+ch5+" "+spcs22
bgimage[12]=spcs22+ch1+" "+ch1+" "+ch1+" "+ch1+" "+ch1+"
"+ch1+" "+spcs22
bgimage[13]=bgimage[12]
bgimage[14]=spcs22+ch1+" "+ch5+" "+ch1+" "+ch1+" "+ch4+" "+ch5+"
"+spcs22
for row=1 to 7
 bgimage[row]=blankline
 bgimage[row+14]=blankline
next row
lastframetime=GetTickCount()
’main loop
do
 ’move snowflakes down one line
 for snowflake=1 to 30
 sfy[snowflake]=sfy[snowflake]+1
 ’if off bottom of display area,reset to top
 if sfy[snowflake]>21 then gosub resetsnowflake
 next snowflake
 for snowflake=1 to 30
 ’check if in position can stick
 if (sfy[snowflake]>7) & (sfy[snowflake]<15) & (sfx[snowflake]>22) &
(sfx[snowflake]<56)
 snflky=sfy[snowflake]:snflkx=sfx[snowflake]
 if mid$(bgimage[snflky],snflkx,1)=ch1
 ’make snowflake stick by copying snowflake character onto background
image
 bgimage[snflky]=left$(bgimage[snflky],snflkx-
1)+"*"+mid$(bgimage[snflky],snflkx+1)
 ’reset snowflake to top of screen
 gosub resetsnowflake

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 129

 endif
 endif
 next snowflake
 ’copy background image to backbuffer
 for row=1 to 21
 bckbuffer[row]=bgimage[row]
 next row
 ’draw snowflakes to backbuffer
 for snowflake=1 to 30
 if sfy[snowflake]>0
 snflky=sfy[snowflake]:snflkx=sfx[snowflake]
 bckbuffer[snflky]=left$(bckbuffer[snflky],snflkx-
1)+"*"+mid$(bckbuffer[snflky],snflkx+1)
 endif
 next snowflake
 ’wait loop so runs at 10 frames per second
 do
 timesincelastframe=GetTickCount()-lastframetime
 until timesincelastframe>=100
 lastframetime=GetTickCount()
 ’show backbuffer
 locate 1,1
 for row=1 to 21
 print bckbuffer[row],
 next row
until ucase$(inkey$)="Q"
closeconsole
end

sub resetsnowflake
 sfy[snowflake]=1
’weight snowflake x position so stick more evenly
 r=rnd(40)
 select r
 case 1
 sfx[snowflake]=23
 case 2
 sfx[snowflake]=30
 case 3
 sfx[snowflake]=37
 case 4
 sfx[snowflake]=41
 case 5
 sfx[snowflake]=44
 case 6
 sfx[snowflake]=51
 default
 sfx[snowflake]=1+rnd(79)
 endselect
return

’xmas.iba,13-DEC-2002,By Boris
DECLARE "kernel32",SleepEx(dwMilliseconds:INT, bAlertable:INT),INT
def snw$[25],scene$[25],grnd$[26],grt$[6],s$:string
def gz,w,b:int:def wrd[4]:uint

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 130

for n=1 to 24:snw$[n]=space$(80):grnd$[n]=space$(80)
for nn=1 to 3:replace$ snw$[n],int(rnd(79)+1),1,".":next nn:next n
wrd=2783918575,4225693575,453492014,64876348:grt$[5]=gosub mkg
wrd=2904638497,541233280,612402532,4794692:grt$[4]=gosub mkg
wrd=3039788271,567210119,545752484,63564092:grt$[3]=gosub mkg
wrd=623395880,541218692,168049956,34122052:grt$[2]=gosub mkg
wrd=2783921647,601789447,67608878,199044924:grt$[1]=gosub mkg
grnd$[0]="1":openconsole:locate 25,1:color 15,0:print string$(80,"#"),
do:setsc:for n=1 to 24:locate n,1:print scene$[n],:next n
sleepex(45,0):until (inkey$<>"")|(val(grnd$[0])=25):closeconsole:end
setsc:
gz=val(grnd$[0]):snw$[0]=snw$[24]
for n=24 to 1 step -1:scene$[n]=snw$[n]
 if rnd(3)>1 then snw$[n]=mid$(snw$[n-1],2)+left$(snw$[n-1],1) else
snw$[n]=snw$[n-1]
 if n<6 then grt$[n]=mid$(grt$[n],2)+left$(grt$[n],1)
next n
if gz<13
 replace$ grnd$[gz],rnd(78)+1,2,"##":if rnd(3)>2 then replace$
grnd$[gz+1],rnd(79)+1,1,"#"
 if instr(grnd$[gz],"############################")
 grnd$[0]=str$(gz+1):grnd$[gz]=string$(80,"#")
 endif
else
 locate 25,36:color 15,rnd(3)-1:print " <ANY KEY> ",
endif
for n=1 to gz+1
 scene$[25-n]=left$(grnd$[n],80):if (n>5)&(n<11) then scene$[27-
n]=left$(grt$[n-5],80)
next n:color 15,0:return
mkg:
s$="":for w=1 to 4:for b=0 to 31:if ((2^b)&wrd[w-1]) then s$=s$+" " else
s$=s$+"#"
next b:next w:return s$+"###################################"

December 15th, 2002 Seasons Greetings! Volume 1, Issue 2

 131

Coming Next Month

 John Sylvester shows us how to avoid huge IF and SELECT constructs when validating
options by using INTEGER arrays. Jerry Muelver brings us up to speed on using Fletchies
DynaString component and Matt Cox, show’s us how to get the PC User Name, in Inside The
Windows API. Rick Lett leads us on another exciting adventure as he introdues us to strings,
plus articles on Drag and Drop, Windows Events and using resources with IBasic and much,
much more! So look for your copy January 15th!

Happy holidays to all!

Tony Jones & Rick Lett
IBasic Monthly Staff

	Editors REMarks
	Developers Notes
	Programming Guru's and Eclectic Thoughts
	Soul In Torment
	Tips And Tricks
	Inside The Windows API
	My Adventures With IBasic
	JavaScript Jukebox
	ibHash: Faking Associative Arrays With IStrings
	LINKED LISTS Made Easy
	The IBasic Users Profile Page
	FTP NOW!
	Of Jigsaw Puzzles, Mice And Me
	Freeware Reviews
	Re-Sizing Windows To Fit The Screen
	Christmas Greetings
	Coming Next Month

